File: _umath.py

package info (click to toggle)
python-sparse 0.16.0a9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,948 kB
  • sloc: python: 9,959; makefile: 8; sh: 3
file content (758 lines) | stat: -rw-r--r-- 24,116 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
import itertools
import operator
from functools import reduce
from itertools import zip_longest

import numba

import numpy as np

from ._utils import _zero_of_dtype, equivalent, isscalar


def elemwise(func, *args, **kwargs):
    """
    Apply a function to any number of arguments.

    Parameters
    ----------
    func : Callable
        The function to apply. Must support broadcasting.
    *args : tuple, optional
        The arguments to the function. Can be :obj:`SparseArray` objects
        or :obj:`scipy.sparse.spmatrix` objects.
    **kwargs : dict, optional
        Any additional arguments to pass to the function.

    Returns
    -------
    SparseArray
        The result of applying the function.

    Raises
    ------
    ValueError
        If the operation would result in a dense matrix, or if the operands
        don't have broadcastable shapes.

    See Also
    --------
    :obj:`numpy.ufunc` :
        A similar Numpy construct. Note that any :code:`ufunc` can be used
        as the :code:`func` input to this function.

    Notes
    -----
    Previously, operations with Numpy arrays were sometimes supported. Now,
    it is necessary to convert Numpy arrays to :obj:`COO` objects.
    """

    return _Elemwise(func, *args, **kwargs).get_result()


@numba.jit(nopython=True, nogil=True)
def _match_arrays(a, b):  # pragma: no cover
    """
    Finds all indexes into a and b such that a[i] = b[j]. The outputs are sorted
    in lexographical order.

    Parameters
    ----------
    a, b : np.ndarray
        The input 1-D arrays to match. If matching of multiple fields is
        needed, use np.recarrays. These two arrays must be sorted.

    Returns
    -------
    a_idx, b_idx : np.ndarray
        The output indices of every possible pair of matching elements.
    """
    if len(a) == 0 or len(b) == 0:
        return np.empty(0, dtype=np.uintp), np.empty(0, dtype=np.uintp)

    a_ind, b_ind = [], []
    nb = len(b)
    ib = 0
    match = 0

    for ia, j in enumerate(a):
        if j == b[match]:
            ib = match

        while ib < nb and j >= b[ib]:
            if j == b[ib]:
                a_ind.append(ia)
                b_ind.append(ib)

                if b[match] < b[ib]:
                    match = ib

            ib += 1

    return np.array(a_ind, dtype=np.uintp), np.array(b_ind, dtype=np.uintp)


def _get_nary_broadcast_shape(*shapes):
    """
    Broadcast any number of shapes to a result shape.

    Parameters
    ----------
    *shapes : tuple[tuple[int]]
        The shapes to broadcast.

    Returns
    -------
    tuple[int]
        The output shape.

    Raises
    ------
    ValueError
        If the input shapes cannot be broadcast to a single shape.
    """
    result_shape = ()

    for shape in shapes:
        try:
            result_shape = _get_broadcast_shape(shape, result_shape)
        except ValueError as e:  # noqa: PERF203
            shapes_str = ", ".join(str(shape) for shape in shapes)
            raise ValueError(f"operands could not be broadcast together with shapes {shapes_str}") from e

    return result_shape


def _get_broadcast_shape(shape1, shape2, is_result=False):
    """
    Get the overall broadcasted shape.

    Parameters
    ----------
    shape1, shape2 : tuple[int]
        The input shapes to broadcast together.
    is_result : bool
        Whether or not shape2 is also the result shape.

    Returns
    -------
    result_shape : tuple[int]
        The overall shape of the result.

    Raises
    ------
    ValueError
        If the two shapes cannot be broadcast together.
    """
    # https://stackoverflow.com/a/47244284/774273
    if not all(
        (l1 == l2) or (l1 == 1) or ((l2 == 1) and not is_result)
        for l1, l2 in zip(shape1[::-1], shape2[::-1], strict=False)
    ):
        raise ValueError(f"operands could not be broadcast together with shapes {shape1}, {shape2}")

    return tuple(l1 if l1 != 1 else l2 for l1, l2 in zip_longest(shape1[::-1], shape2[::-1], fillvalue=1))[::-1]


def _get_broadcast_parameters(shape, broadcast_shape):
    """
    Get the broadcast parameters.

    Parameters
    ----------
    shape : tuple[int]
        The input shape.
    broadcast_shape
        The shape to broadcast to.

    Returns
    -------
    params : list
        A list containing None if the dimension isn't in the original array, False if
        it needs to be broadcast, and True if it doesn't.
    """
    return [
        None if l1 is None else l1 == l2 for l1, l2 in zip_longest(shape[::-1], broadcast_shape[::-1], fillvalue=None)
    ][::-1]


def _get_reduced_coords(coords, params):
    """
    Gets only those dimensions of the coordinates that don't need to be broadcast.

    Parameters
    ----------
    coords : np.ndarray
        The coordinates to reduce.
    params : list
        The params from which to check which dimensions to get.

    Returns
    -------
    reduced_coords : np.ndarray
        The reduced coordinates.
    """

    reduced_params = [bool(param) for param in params]

    return coords[reduced_params]


def _get_reduced_shape(shape, params):
    """
    Gets only those dimensions of the coordinates that don't need to be broadcast.

    Parameters
    ----------
    shape : np.ndarray
        The coordinates to reduce.
    params : list
        The params from which to check which dimensions to get.

    Returns
    -------
    reduced_coords : np.ndarray
        The reduced coordinates.
    """
    return tuple(sh for sh, p in zip(shape, params, strict=True) if p)


def _get_expanded_coords_data(coords, data, params, broadcast_shape):
    """
    Expand coordinates/data to broadcast_shape. Does most of the heavy lifting for broadcast_to.
    Produces sorted output for sorted inputs.

    Parameters
    ----------
    coords : np.ndarray
        The coordinates to expand.
    data : np.ndarray
        The data corresponding to the coordinates.
    params : list
        The broadcast parameters.
    broadcast_shape : tuple[int]
        The shape to broadcast to.

    Returns
    -------
    expanded_coords : np.ndarray
        List of 1-D arrays. Each item in the list has one dimension of coordinates.
    expanded_data : np.ndarray
        The data corresponding to expanded_coords.
    """
    first_dim = -1
    expand_shapes = []
    for d, p, sh in zip(range(len(broadcast_shape)), params, broadcast_shape, strict=True):
        if p and first_dim == -1:
            expand_shapes.append(coords.shape[1])
            first_dim = d

        if not p:
            expand_shapes.append(sh)

    all_idx = _cartesian_product(*(np.arange(d, dtype=np.intp) for d in expand_shapes))

    false_dim = 0
    dim = 0

    expanded_coords = np.empty((len(broadcast_shape), all_idx.shape[1]), dtype=np.intp)

    if first_dim != -1:
        expanded_data = data[all_idx[first_dim]]
    else:
        expanded_coords = all_idx if len(data) else np.empty((0, all_idx.shape[1]), dtype=np.intp)
        expanded_data = np.repeat(data, reduce(operator.mul, broadcast_shape, 1))
        return np.asarray(expanded_coords), np.asarray(expanded_data)

    for d, p in zip(range(len(broadcast_shape)), params, strict=True):
        if p:
            expanded_coords[d] = coords[dim, all_idx[first_dim]]
        else:
            expanded_coords[d] = all_idx[false_dim + (d > first_dim)]
            false_dim += 1

        if p is not None:
            dim += 1

    return np.asarray(expanded_coords), np.asarray(expanded_data)


# (c) senderle
# Taken from https://stackoverflow.com/a/11146645/774273
# License: https://creativecommons.org/licenses/by-sa/3.0/
def _cartesian_product(*arrays):
    """
    Get the cartesian product of a number of arrays.

    Parameters
    ----------
    *arrays : Tuple[np.ndarray]
        The arrays to get a cartesian product of. Always sorted with respect
        to the original array.

    Returns
    -------
    out : np.ndarray
        The overall cartesian product of all the input arrays.
    """
    broadcastable = np.ix_(*arrays)
    broadcasted = np.broadcast_arrays(*broadcastable)
    rows, cols = np.prod(broadcasted[0].shape), len(broadcasted)
    dtype = np.result_type(*arrays)
    out = np.empty(rows * cols, dtype=dtype)
    start, end = 0, rows
    for a in broadcasted:
        out[start:end] = a.reshape(-1)
        start, end = end, end + rows
    return out.reshape(cols, rows)


def _get_matching_coords(coords, params):
    """
    Get the matching coords across a number of broadcast operands.

    Parameters
    ----------
    coords : list[numpy.ndarray]
        The input coordinates.
    params : list[Union[bool, none]]
        The broadcast parameters.

    Returns
    -------
    numpy.ndarray
        The broacasted coordinates
    """
    matching_coords = []
    dims = np.zeros(len(coords), dtype=np.uint8)

    for p_all in zip(*params, strict=True):
        for i, p in enumerate(p_all):
            if p:
                matching_coords.append(coords[i][dims[i]])
                break
        else:
            matching_coords.append(coords[dims[0]])

        for i, p in enumerate(p_all):
            if p is not None:
                dims[i] += 1

    return np.asarray(matching_coords, dtype=np.intp)


def broadcast_to(x, shape):
    """
    Performs the equivalent of :obj:`numpy.broadcast_to` for :obj:`COO`. Note that
    this function returns a new array instead of a view.

    Parameters
    ----------
    shape : tuple[int]
        The shape to broadcast the data to.

    Returns
    -------
    COO
        The broadcasted sparse array.

    Raises
    ------
    ValueError
        If the operand cannot be broadcast to the given shape.

    See Also
    --------
    :obj:`numpy.broadcast_to` : NumPy equivalent function
    """
    from ._coo import COO

    if shape == x.shape:
        return x

    result_shape = _get_broadcast_shape(x.shape, shape, is_result=True)
    params = _get_broadcast_parameters(x.shape, result_shape)
    coords, data = _get_expanded_coords_data(x.coords, x.data, params, result_shape)

    # Check if all the non-broadcast axes are next to each other
    nonbroadcast_idx = [idx for idx, p in enumerate(params) if p]
    diff_nonbroadcast_idx = [a - b for a, b in zip(nonbroadcast_idx[1:], nonbroadcast_idx[:-1], strict=True)]
    sorted = all(d == 1 for d in diff_nonbroadcast_idx)

    return COO(
        coords,
        data,
        shape=result_shape,
        has_duplicates=False,
        sorted=sorted,
        fill_value=x.fill_value,
    )


class _Elemwise:
    def __init__(self, func, *args, **kwargs):
        """
        Initialize the element-wise function calculator.

        Parameters
        ----------
        func : types.Callable
            The function to compute
        *args : tuple[Union[SparseArray, ndarray, scipy.sparse.spmatrix]]
            The arguments to compute the function on.
        **kwargs : dict
            Extra arguments to pass to the function.
        """
        from ._common import _is_scipy_sparse_obj
        from ._compressed import GCXS
        from ._coo import COO
        from ._dok import DOK
        from ._sparse_array import SparseArray

        processed_args = []
        out_type = GCXS
        out_kwargs = {}

        sparse_args = [arg for arg in args if isinstance(arg, SparseArray)]

        if len(sparse_args) == 0:
            raise ValueError(f"None of the args is sparse: {args}")
        if all(isinstance(arg, DOK) for arg in sparse_args):
            out_type = DOK
        elif all(isinstance(arg, GCXS) for arg in sparse_args):
            out_type = GCXS
            if len({arg.compressed_axes for arg in sparse_args}) == 1:
                out_kwargs["compressed_axes"] = sparse_args[0].compressed_axes
        else:
            out_type = COO

        for arg in args:
            if _is_scipy_sparse_obj(arg):
                processed_args.append(COO.from_scipy_sparse(arg))
            elif isscalar(arg) or isinstance(arg, np.ndarray):
                # Faster and more reliable to pass ()-shaped ndarrays as scalars.
                processed_args.append(arg)
            elif isinstance(arg, SparseArray):
                if not isinstance(arg, COO):
                    arg = arg.asformat(COO)
                if arg.ndim == 0:
                    arg = arg.todense()
                processed_args.append(arg)
            else:
                self.args = None
                return

        self.out_type = out_type
        self.out_kwargs = out_kwargs
        self.args = tuple(processed_args)
        self.func = func
        self.dtype = kwargs.pop("dtype", None)
        self.kwargs = kwargs
        self.cache = {}
        self._dense_result = False

        self._check_broadcast()
        self._get_fill_value()

    def get_result(self):
        from ._coo import COO

        if self.args is None:
            return NotImplemented

        if self._dense_result:
            args = [a.todense() if isinstance(a, COO) else a for a in self.args]
            return self.func(*args, **self.kwargs)

        if any(s == 0 for s in self.shape):
            data = np.empty((0,), dtype=self.fill_value.dtype)
            coords = np.empty((0, len(self.shape)), dtype=np.intp)
            return COO(
                coords,
                data,
                shape=self.shape,
                has_duplicates=False,
                fill_value=self.fill_value,
            )

        data_list = []
        coords_list = []

        for mask in itertools.product(*[[True, False] if isinstance(arg, COO) else [None] for arg in self.args]):
            if not any(mask):
                continue

            r = self._get_func_coords_data(mask)

            if r is not None:
                coords_list.append(r[0])
                data_list.append(r[1])

        # Concatenate matches and mismatches
        data = np.concatenate(data_list) if len(data_list) else np.empty((0,), dtype=self.fill_value.dtype)
        coords = (
            np.concatenate(coords_list, axis=1) if len(coords_list) else np.empty((0, len(self.shape)), dtype=np.intp)
        )

        return COO(
            coords,
            data,
            shape=self.shape,
            has_duplicates=False,
            fill_value=self.fill_value,
        ).asformat(self.out_type, **self.out_kwargs)

    def _get_fill_value(self):
        """
        A function that finds and returns the fill-value.

        Raises
        ------
        ValueError
            If the fill-value is inconsistent.
        """
        from ._coo import COO

        def get_zero_arg(x):
            if isinstance(x, COO):
                return np.atleast_1d(x.fill_value)

            if isinstance(x, np.generic | np.ndarray):
                return np.atleast_1d(x)

            return x

        zero_args = tuple(get_zero_arg(a) for a in self.args)

        # Some elemwise functions require a dtype argument, some abhorr it.
        try:
            fill_value_array = self.func(*zero_args, dtype=self.dtype, **self.kwargs)
        except TypeError:
            fill_value_array = self.func(*zero_args, **self.kwargs)

        try:
            fill_value = fill_value_array[(0,) * fill_value_array.ndim]
        except IndexError:
            zero_args = tuple(
                arg.fill_value if isinstance(arg, COO) else _zero_of_dtype(arg.dtype) for arg in self.args
            )
            fill_value = self.func(*zero_args, **self.kwargs)[()]

        equivalent_fv = equivalent(fill_value, fill_value_array, loose=True).all()
        if not equivalent_fv and self.shape != self.ndarray_shape:
            raise ValueError(
                "Performing a mixed sparse-dense operation that would result in a dense array. "
                "Please make sure that func(sparse_fill_values, ndarrays) is a constant array."
            )
        if not equivalent_fv:
            self._dense_result = True

        # Store dtype separately if needed.
        if self.dtype is not None:
            fill_value = fill_value.astype(self.dtype)

        self.fill_value = fill_value
        self.dtype = self.fill_value.dtype

    def _check_broadcast(self):
        """
        Checks if adding the ndarrays changes the broadcast shape.

        Raises
        ------
        ValueError
            If the check fails.
        """
        from ._coo import COO

        full_shape = _get_nary_broadcast_shape(*tuple(np.shape(arg) for arg in self.args))
        non_ndarray_shape = _get_nary_broadcast_shape(*tuple(arg.shape for arg in self.args if isinstance(arg, COO)))
        ndarray_shape = _get_nary_broadcast_shape(*tuple(arg.shape for arg in self.args if isinstance(arg, np.ndarray)))

        self.shape = full_shape
        self.ndarray_shape = ndarray_shape
        self.non_ndarray_shape = non_ndarray_shape

    def _get_func_coords_data(self, mask):
        """
        Gets the coords/data for a certain mask

        Parameters
        ----------
        mask : tuple[Union[bool, NoneType]]
            The mask determining whether to match or unmatch.

        Returns
        -------
        None or tuple
            The coords/data tuple for the given mask.
        """
        from ._coo import COO

        matched_args = [arg for arg, m in zip(self.args, mask, strict=True) if m is not None and m]
        unmatched_args = [arg for arg, m in zip(self.args, mask, strict=True) if m is not None and not m]
        ndarray_args = [arg for arg, m in zip(self.args, mask, strict=True) if m is None]

        matched_broadcast_shape = _get_nary_broadcast_shape(
            *tuple(np.shape(arg) for arg in itertools.chain(matched_args, ndarray_args))
        )

        matched_arrays = self._match_coo(*matched_args, cache=self.cache, broadcast_shape=matched_broadcast_shape)

        func_args = []

        m_arg = 0
        for arg, m in zip(self.args, mask, strict=True):
            if m is None:
                func_args.append(np.broadcast_to(arg, matched_broadcast_shape)[tuple(matched_arrays[0].coords)])
                continue

            if m:
                func_args.append(matched_arrays[m_arg].data)
                m_arg += 1
            else:
                func_args.append(arg.fill_value)

        # Try our best to preserve the output dtype.
        try:
            func_data = self.func(*func_args, dtype=self.dtype, **self.kwargs)
        except TypeError:
            try:
                func_args = np.broadcast_arrays(*func_args)
                out = np.empty(func_args[0].shape, dtype=self.dtype)
                func_data = self.func(*func_args, out=out, **self.kwargs)
            except TypeError:
                func_data = self.func(*func_args, **self.kwargs).astype(self.dtype)

        unmatched_mask = ~equivalent(func_data, self.fill_value)

        if not unmatched_mask.any():
            return None

        func_coords = matched_arrays[0].coords[:, unmatched_mask]
        func_data = func_data[unmatched_mask]

        if matched_arrays[0].shape != self.shape:
            params = _get_broadcast_parameters(matched_arrays[0].shape, self.shape)
            func_coords, func_data = _get_expanded_coords_data(func_coords, func_data, params, self.shape)

        if all(m is None or m for m in mask):
            return func_coords, func_data

        # Not really sorted but we need the sortedness.
        func_array = COO(func_coords, func_data, self.shape, has_duplicates=False, sorted=True)

        unmatched_mask = np.ones(func_array.nnz, dtype=np.bool_)

        for arg in unmatched_args:
            matched_idx = self._match_coo(func_array, arg, return_midx=True)[0]
            unmatched_mask[matched_idx] = False

        coords = np.asarray(func_array.coords[:, unmatched_mask], order="C")
        data = np.asarray(func_array.data[unmatched_mask], order="C")

        return coords, data

    @staticmethod
    def _match_coo(*args, **kwargs):
        """
        Matches the coordinates for any number of input :obj:`COO` arrays.
        Equivalent to "sparse" broadcasting for all arrays.

        Parameters
        ----------
        *args : Tuple[COO]
            The input :obj:`COO` arrays.
        return_midx : bool
            Whether to return matched indices or matched arrays. Matching
            only supported for two arrays. ``False`` by default.
        cache : dict
            Cache of things already matched. No cache by default.

        Returns
        -------
        matched_idx : List[ndarray]
            The indices of matched elements in the original arrays. Only returned if
            ``return_midx`` is ``True``.
        matched_arrays : List[COO]
            The expanded, matched :obj:`COO` objects. Only returned if
            ``return_midx`` is ``False``.
        """
        from ._coo import COO
        from ._coo.common import linear_loc

        cache = kwargs.pop("cache", None)
        return_midx = kwargs.pop("return_midx", False)
        broadcast_shape = kwargs.pop("broadcast_shape", None)

        if kwargs:
            raise ValueError(f"Unknown kwargs: {kwargs.keys()}")

        if return_midx and (len(args) != 2 or cache is not None):
            raise NotImplementedError("Matching indices only supported for two args, and no cache.")

        matched_arrays = [args[0]]
        cache_key = [id(args[0])]
        for arg2 in args[1:]:
            cache_key.append(id(arg2))
            key = tuple(cache_key)
            if cache is not None and key in cache:
                matched_arrays = cache[key]
                continue

            cargs = [matched_arrays[0], arg2]
            current_shape = _get_broadcast_shape(matched_arrays[0].shape, arg2.shape)
            params = [_get_broadcast_parameters(arg.shape, current_shape) for arg in cargs]
            reduced_params = [all(p) for p in zip(*params, strict=True)]
            reduced_shape = _get_reduced_shape(arg2.shape, _rev_idx(reduced_params, arg2.ndim))

            reduced_coords = [_get_reduced_coords(arg.coords, _rev_idx(reduced_params, arg.ndim)) for arg in cargs]

            linear = [linear_loc(rc, reduced_shape) for rc in reduced_coords]
            sorted_idx = [np.argsort(idx) for idx in linear]
            linear = [idx[s] for idx, s in zip(linear, sorted_idx, strict=True)]
            matched_idx = _match_arrays(*linear)

            if return_midx:
                return [sidx[midx] for sidx, midx in zip(sorted_idx, matched_idx, strict=True)]

            coords = [arg.coords[:, s] for arg, s in zip(cargs, sorted_idx, strict=True)]
            mcoords = [c[:, idx] for c, idx in zip(coords, matched_idx, strict=True)]
            mcoords = _get_matching_coords(mcoords, params)
            mdata = [arg.data[sorted_idx[0]][matched_idx[0]] for arg in matched_arrays]
            mdata.append(arg2.data[sorted_idx[1]][matched_idx[1]])
            # The coords aren't truly sorted, but we don't need them, so it's
            # best to avoid the extra cost.
            matched_arrays = [COO(mcoords, md, shape=current_shape, sorted=True, has_duplicates=False) for md in mdata]

            if cache is not None:
                cache[key] = matched_arrays

        if broadcast_shape is not None and matched_arrays[0].shape != broadcast_shape:
            params = _get_broadcast_parameters(matched_arrays[0].shape, broadcast_shape)
            coords, idx = _get_expanded_coords_data(
                matched_arrays[0].coords,
                np.arange(matched_arrays[0].nnz),
                params,
                broadcast_shape,
            )

            matched_arrays = [
                COO(
                    coords,
                    arr.data[idx],
                    shape=broadcast_shape,
                    sorted=True,
                    has_duplicates=False,
                )
                for arr in matched_arrays
            ]

        return matched_arrays


def _rev_idx(arg, idx):
    if idx == 0:
        return arg[len(arg) :]

    return arg[-idx:]