1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
import functools
import operator
import warnings
from collections.abc import Iterable
from functools import reduce
from numbers import Integral
import numba
import numpy as np
def assert_eq(x, y, check_nnz=True, compare_dtype=True, **kwargs):
from ._coo import COO
assert x.shape == y.shape
if compare_dtype:
assert x.dtype == y.dtype
check_equal = (
np.array_equal
if (np.issubdtype(x.dtype, np.integer) and np.issubdtype(y.dtype, np.integer))
or (np.issubdtype(x.dtype, np.flexible) and np.issubdtype(y.dtype, np.flexible))
else functools.partial(np.allclose, equal_nan=True)
)
if isinstance(x, COO):
assert is_canonical(x)
if isinstance(y, COO):
assert is_canonical(y)
if isinstance(x, COO) and isinstance(y, COO) and check_nnz:
assert np.array_equal(x.coords, y.coords)
assert check_equal(x.data, y.data, **kwargs)
assert x.fill_value == y.fill_value or (np.isnan(x.fill_value) and np.isnan(y.fill_value))
return
if hasattr(x, "todense"):
xx = x.todense()
if check_nnz:
assert_nnz(x, xx)
else:
xx = x
if hasattr(y, "todense"):
yy = y.todense()
if check_nnz:
assert_nnz(y, yy)
else:
yy = y
assert check_equal(xx, yy, **kwargs)
def assert_gcxs_slicing(s, x):
"""
Util function to test slicing of GCXS matrices after product multiplication.
For simplicity, it tests only tensors with number of dimension = 3.
Parameters
----------
s: sparse product matrix
x: dense product matrix
"""
rng = np.random.default_rng()
row = rng.integers(s.shape[s.ndim - 2])
assert np.allclose(s[0][row].data, [num for num in x[0][row] if num != 0])
# regression test
col = s.shape[s.ndim - 1]
for i in range(len(s.indices) // col):
j = col * i
k = col * (1 + i)
s.data[j:k] = s.data[j:k][::-1]
s.indices[j:k] = s.indices[j:k][::-1]
assert np.array_equal(s[0][row].data, np.array([]))
def assert_nnz(s, x):
fill_value = s.fill_value if hasattr(s, "fill_value") else _zero_of_dtype(s.dtype)
assert np.sum(~equivalent(x, fill_value)) == s.nnz
def is_canonical(x):
return not x.shape or ((np.diff(x.linear_loc()) > 0).all() and not equivalent(x.data, x.fill_value).any())
def _zero_of_dtype(dtype):
"""
Creates a ()-shaped 0-dimensional zero array of a given dtype.
Parameters
----------
dtype : numpy.dtype
The dtype for the array.
Returns
-------
np.ndarray
The zero array.
"""
return np.zeros((), dtype=dtype)[()]
@numba.jit(nopython=True, nogil=True)
def algD(n, N, random_state):
"""
Random Sampling without Replacement
Alg D proposed by J.S. Vitter in Faster Methods for Random Sampling
Parameters:
n = sample size (nnz)
N = size of system (elements)
random_state = seed for random number generation
"""
n = np.intp(n + 1)
N = np.intp(N)
qu1 = N - n + 1
Vprime = np.exp(np.log(random_state.random()) / n)
i = 0
arr = np.zeros(n - 1, dtype=np.intp)
arr[-1] = -1
while n > 1:
nmin1inv = 1 / (n - 1)
while True:
while True:
X = N * (1 - Vprime)
S = np.intp(X)
if qu1 > S:
break
Vprime = np.exp(np.log(random_state.random()) / n)
y1 = np.exp(np.log(random_state.random() * N / qu1) * nmin1inv)
Vprime = y1 * (1 - X / N) * (qu1 / (qu1 - S))
if Vprime <= 1:
break
y2 = 1
top = N - 1
if n - 1 > S:
bottom = N - n
limit = N - S
else:
bottom = N - S - 1
limit = qu1
t = N - 1
while t >= limit:
y2 *= top / bottom
top -= 1
bottom -= 1
t -= 1
if y1 * np.exp(np.log(y2) / nmin1inv) <= N / (N - X):
Vprime = np.exp(np.log(random_state.random()) * nmin1inv)
break
Vprime = np.exp(np.log(random_state.random()) / n)
arr[i] = arr[i - 1] + S + 1
i += 1
N = N - S - 1
n -= 1
qu1 = qu1 - S
return arr
@numba.jit(nopython=True, nogil=True)
def algA(n, N, random_state):
"""
Random Sampling without Replacement
Alg A proposed by J.S. Vitter in Faster Methods for Random Sampling
Parameters:
n = sample size (nnz)
N = size of system (elements)
random_state = seed for random number generation
"""
n = np.intp(n)
N = np.intp(N)
arr = np.zeros(n, dtype=np.intp)
arr[-1] = -1
i = 0
top = N - n
while n >= 2:
V = random_state.random()
S = 0
quot = top / N
while quot > V:
S += 1
top -= 1
N -= 1
quot *= top / N
arr[i] = arr[i - 1] + S + 1
i += 1
N -= 1
n -= 1
S = np.intp(N * random_state.random())
arr[i] = arr[i - 1] + S + 1
i += 1
return arr
@numba.jit(nopython=True, nogil=True)
def reverse(inv, N):
"""
If density of random matrix is greater than .5, it is faster to sample states not included
Parameters:
arr = np.array(np.intp) of indices to be excluded from sample
N = size of the system (elements)
"""
N = np.intp(N)
a = np.zeros(np.intp(N - len(inv)), dtype=np.intp)
j = 0
k = 0
for i in range(N):
if j == len(inv):
a[k:] = np.arange(i, N)
break
if i == inv[j]:
j += 1
else:
a[k] = i
k += 1
return a
default_rng = np.random.default_rng()
def random(
shape,
density=None,
nnz=None,
random_state=None,
data_rvs=None,
format="coo",
fill_value=None,
idx_dtype=None,
**kwargs,
):
"""Generate a random sparse multidimensional array
Parameters
----------
shape : Tuple[int]
Shape of the array
density : float, optional
Density of the generated array; default is 0.01.
Mutually exclusive with `nnz`.
nnz : int, optional
Number of nonzero elements in the generated array.
Mutually exclusive with `density`.
random_state : Union[numpy.random.Generator, int], optional
Random number generator or random seed. If not given, the
singleton numpy.random will be used. This random state will be used
for sampling the sparsity structure, but not necessarily for sampling
the values of the structurally nonzero entries of the matrix.
data_rvs : Callable
Data generation callback. Must accept one single parameter: number of
:code:`nnz` elements, and return one single NumPy array of exactly
that length.
format : str
The format to return the output array in.
fill_value : scalar
The fill value of the output array.
Returns
-------
SparseArray
The generated random matrix.
See Also
--------
:obj:`scipy.sparse.rand` : Equivalent Scipy function.
:obj:`numpy.random.rand` : Similar Numpy function.
Examples
--------
>>> from sparse import random
>>> from scipy import stats
>>> rvs = lambda x: stats.poisson(25, loc=10).rvs(x, random_state=np.random.RandomState(1))
>>> s = random((2, 3, 4), density=0.25, random_state=np.random.RandomState(1), data_rvs=rvs)
>>> s.todense() # doctest: +NORMALIZE_WHITESPACE
array([[[ 0, 0, 0, 0],
[34, 0, 29, 30],
[ 0, 0, 0, 0]],
<BLANKLINE>
[[33, 0, 0, 34],
[34, 0, 0, 0],
[ 0, 0, 0, 0]]])
"""
# Copied, in large part, from scipy.sparse.random
# See https://github.com/scipy/scipy/blob/main/LICENSE.txt
from ._coo import COO
if density is not None and nnz is not None:
raise ValueError("'density' and 'nnz' are mutually exclusive")
if density is None:
density = 0.01
if not (0 <= density <= 1):
raise ValueError(f"density {density} is not in the unit interval")
elements = np.prod(shape, dtype=np.intp)
if nnz is None:
nnz = int(elements * density)
if not (0 <= nnz <= elements):
raise ValueError(f"cannot generate {nnz} nonzero elements for an array with {elements} total elements")
if random_state is None:
random_state = default_rng
elif isinstance(random_state, Integral):
random_state = np.random.default_rng(random_state)
if data_rvs is None:
data_rvs = random_state.random
if nnz == elements or density >= 1:
ind = np.arange(elements)
elif nnz < 2:
ind = random_state.choice(elements, nnz)
# Faster to find non-sampled indices and remove them for dens > .5
elif elements - nnz < 2:
ind = reverse(random_state.choice(elements, elements - nnz), elements)
elif nnz > elements / 2:
nnztemp = elements - nnz
# Using algorithm A for dens > .1
if elements > 10 * nnztemp:
ind = reverse(
algD(nnztemp, elements, random_state),
elements,
)
else:
ind = reverse(
algA(nnztemp, elements, random_state),
elements,
)
else:
ind = algD(nnz, elements, random_state) if elements > 10 * nnz else algA(nnz, elements, random_state)
data = data_rvs(nnz)
ar = COO(
ind[None, :],
data,
shape=elements,
fill_value=fill_value,
).reshape(shape)
if idx_dtype:
if can_store(idx_dtype, max(shape)):
ar.coords = ar.coords.astype(idx_dtype)
else:
raise ValueError(f"cannot cast array with shape {shape} to dtype {idx_dtype}.")
return ar.asformat(format, **kwargs)
def isscalar(x):
from ._sparse_array import SparseArray
return not isinstance(x, SparseArray) and np.isscalar(x)
def random_value_array(value, fraction):
def replace_values(n):
i = int(n * fraction)
ar = np.empty((n,), dtype=np.float64)
ar[:i] = value
ar[i:] = default_rng.random(n - i)
return ar
return replace_values
def normalize_axis(axis, ndim):
"""
Normalize negative axis indices to their positive counterpart for a given
number of dimensions.
Parameters
----------
axis : Union[int, Iterable[int], None]
The axis indices.
ndim : int
Number of dimensions to normalize axis indices against.
Returns
-------
axis
The normalized axis indices.
"""
if axis is None:
return None
if isinstance(axis, Integral):
axis = int(axis)
if axis < 0:
axis += ndim
if axis >= ndim or axis < 0:
raise ValueError(f"Invalid axis index {axis} for ndim={ndim}")
return axis
if isinstance(axis, Iterable):
if not all(isinstance(a, Integral) for a in axis):
raise ValueError(f"axis {axis} not understood")
return tuple(normalize_axis(a, ndim) for a in axis)
raise ValueError(f"axis {axis} not understood")
def equivalent(x, y, /, loose=False):
"""
Checks the equivalence of two scalars or arrays with broadcasting. Assumes
a consistent dtype.
Parameters
----------
x : scalar or numpy.ndarray
y : scalar or numpy.ndarray
Returns
-------
equivalent : scalar or numpy.ndarray
The element-wise comparison of where two arrays are equivalent.
Examples
--------
>>> equivalent(1, 1)
True
>>> equivalent(np.nan, np.nan + 1)
True
>>> equivalent(1, 2)
False
>>> equivalent(np.inf, np.inf)
True
>>> equivalent(np.PZERO, np.NZERO)
False
"""
x = np.asarray(x)
y = np.asarray(y)
# Can't contain NaNs
dt = np.result_type(x.dtype, y.dtype)
if not any(np.issubdtype(dt, t) for t in [np.floating, np.complexfloating]):
return x == y
if loose:
if np.issubdtype(dt, np.complexfloating):
return equivalent(x.real, y.real) & equivalent(x.imag, y.imag)
# TODO: Rec array handling
return (x == y) | ((x != x) & (y != y))
if x.size == 0 or y.size == 0:
shape = np.broadcast_shapes(x.shape, y.shape)
return np.empty(shape, dtype=np.bool_)
x, y = np.broadcast_arrays(x[..., None], y[..., None])
return (x.astype(dt).view(np.uint8) == y.astype(dt).view(np.uint8)).all(axis=-1)
# copied from zarr
# See https://github.com/zarr-developers/zarr-python/blob/main/zarr/util.py
def human_readable_size(size):
if size < 2**10:
return str(size)
if size < 2**20:
return f"{size / 2**10:.1f}K"
if size < 2**30:
return f"{size / 2**20:.1f}M"
if size < 2**40:
return f"{size / 2**30:.1f}G"
if size < 2**50:
return f"{size / 2**40:.1f}T"
return f"{size / 2**50:.1f}P"
def html_table(arr):
table = ["<table><tbody>"]
headings = ["Format", "Data Type", "Shape", "nnz", "Density", "Read-only"]
density = np.float64(arr.nnz) / np.float64(arr.size)
info = [
type(arr).__name__.lower(),
str(arr.dtype),
str(arr.shape),
str(arr.nnz),
str(density),
]
# read-only
info.append(str(not hasattr(arr, "__setitem__")))
if hasattr(arr, "nbytes"):
headings.append("Size")
info.append(human_readable_size(arr.nbytes))
headings.append("Storage ratio")
info.append(
f"{np.float64(arr.nbytes) / np.float64(reduce(operator.mul, arr.shape, 1) * arr.dtype.itemsize):.2f}"
)
# compressed_axes
if type(arr).__name__ == "GCXS":
headings.append("Compressed Axes")
info.append(str(arr.compressed_axes))
for h, i in zip(headings, info, strict=True):
table.append(f'<tr><th style="text-align: left">{h}</th><td style="text-align: left">{i}</td></tr>')
table.append("</tbody></table>")
return "".join(table)
def check_compressed_axes(ndim, compressed_axes):
"""
Checks if the given compressed_axes are compatible with the shape of the array.
Parameters
----------
ndim : int
compressed_axes : Iterable
Raises
------
ValueError
If the compressed_axes are incompatible with the number of dimensions
"""
if compressed_axes is None:
return
if isinstance(ndim, Iterable):
ndim = len(ndim)
if not isinstance(compressed_axes, Iterable):
raise ValueError("compressed_axes must be an iterable")
if len(compressed_axes) == ndim:
raise ValueError("cannot compress all axes")
if not np.array_equal(list(set(compressed_axes)), compressed_axes):
raise ValueError("axes must be sorted without repeats")
if not all(isinstance(a, Integral) for a in compressed_axes):
raise ValueError("axes must be represented with integers")
if min(compressed_axes) < 0 or max(compressed_axes) >= ndim:
raise ValueError("axis out of range")
def check_fill_value(x, /, *, accept_fv=None) -> None:
"""Raises on incorrect fill-values.
Parameters
----------
x : SparseArray
The array to check
accept_fv : scalar or list of scalar, optional
The list of accepted fill-values. The default accepts only zero.
Raises
------
ValueError
If the fill-value doesn't match.
"""
if accept_fv is None:
accept_fv = [0]
if not isinstance(accept_fv, Iterable):
accept_fv = [accept_fv]
if not any(equivalent(fv, x.fill_value, loose=True) for fv in accept_fv):
raise ValueError(f"{x.fill_value=} but should be in {accept_fv}.")
def check_zero_fill_value(*args):
"""
Checks if all the arguments have zero fill-values.
Parameters
----------
*args : Iterable[SparseArray]
Raises
------
ValueError
If all arguments don't have zero fill-values.
Examples
--------
>>> import sparse
>>> s1 = sparse.random((10,), density=0.5)
>>> s2 = sparse.random((10,), density=0.5, fill_value=0.5)
>>> check_zero_fill_value(s1)
>>> check_zero_fill_value(s2)
Traceback (most recent call last):
...
ValueError: This operation requires zero fill values, but argument 0 had a fill value of 0.5.
>>> check_zero_fill_value(s1, s2)
Traceback (most recent call last):
...
ValueError: This operation requires zero fill values, but argument 1 had a fill value of 0.5.
"""
for i, arg in enumerate(args):
if hasattr(arg, "fill_value") and not equivalent(arg.fill_value, _zero_of_dtype(arg.dtype)):
raise ValueError(
"This operation requires zero fill values, "
f"but argument {i:d} had a fill value of {arg.fill_value!s}."
)
def check_consistent_fill_value(arrays):
"""
Checks if all the arguments have consistent fill-values.
Parameters
----------
args : Iterable[SparseArray]
Raises
------
ValueError
If all elements of :code:`arrays` don't have the same fill-value.
Examples
--------
>>> import sparse
>>> s1 = sparse.random((10,), density=0.5, fill_value=0.1)
>>> s2 = sparse.random((10,), density=0.5, fill_value=0.5)
>>> check_consistent_fill_value([s1, s1])
>>> check_consistent_fill_value([s1, s2]) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: This operation requires consistent fill-values, but argument 1 had a fill value of 0.5,\
which is different from a fill_value of 0.1 in the first argument.
"""
arrays = list(arrays)
from ._sparse_array import SparseArray
if not all(isinstance(s, SparseArray) for s in arrays):
raise ValueError("All arrays must be instances of SparseArray.")
if len(arrays) == 0:
raise ValueError("At least one array required.")
fv = arrays[0].fill_value
for i, arg in enumerate(arrays):
if not equivalent(fv, arg.fill_value):
raise ValueError(
"This operation requires consistent fill-values, "
f"but argument {i:d} had a fill value of {arg.fill_value!s}, which "
f"is different from a fill_value of {fv!s} in the first "
"argument."
)
def get_out_dtype(arr, scalar):
out_type = arr.dtype
if not can_store(out_type, scalar):
out_type = np.min_scalar_type(scalar)
return out_type
def can_store(dtype, scalar):
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
warnings.filterwarnings("error", "out-of-bound", DeprecationWarning)
return np.array(scalar, dtype=dtype) == np.array(scalar)
except (ValueError, OverflowError):
return False
def is_unsigned_dtype(dtype):
return np.issubdtype(dtype, np.integer) and np.iinfo(dtype).min == 0
def convert_format(format):
from ._sparse_array import SparseArray
if isinstance(format, type):
if not issubclass(format, SparseArray):
raise ValueError(f"Invalid format: {format}")
return format.__name__.lower()
if isinstance(format, str):
return format
raise ValueError(f"Invalid format: {format}")
|