File: _utils.py

package info (click to toggle)
python-sparse 0.16.0a9-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,948 kB
  • sloc: python: 9,959; makefile: 8; sh: 3
file content (678 lines) | stat: -rw-r--r-- 19,618 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import functools
import operator
import warnings
from collections.abc import Iterable
from functools import reduce
from numbers import Integral

import numba

import numpy as np


def assert_eq(x, y, check_nnz=True, compare_dtype=True, **kwargs):
    from ._coo import COO

    assert x.shape == y.shape

    if compare_dtype:
        assert x.dtype == y.dtype

    check_equal = (
        np.array_equal
        if (np.issubdtype(x.dtype, np.integer) and np.issubdtype(y.dtype, np.integer))
        or (np.issubdtype(x.dtype, np.flexible) and np.issubdtype(y.dtype, np.flexible))
        else functools.partial(np.allclose, equal_nan=True)
    )

    if isinstance(x, COO):
        assert is_canonical(x)
    if isinstance(y, COO):
        assert is_canonical(y)

    if isinstance(x, COO) and isinstance(y, COO) and check_nnz:
        assert np.array_equal(x.coords, y.coords)
        assert check_equal(x.data, y.data, **kwargs)
        assert x.fill_value == y.fill_value or (np.isnan(x.fill_value) and np.isnan(y.fill_value))
        return

    if hasattr(x, "todense"):
        xx = x.todense()
        if check_nnz:
            assert_nnz(x, xx)
    else:
        xx = x
    if hasattr(y, "todense"):
        yy = y.todense()
        if check_nnz:
            assert_nnz(y, yy)
    else:
        yy = y
    assert check_equal(xx, yy, **kwargs)


def assert_gcxs_slicing(s, x):
    """
    Util function to test slicing of GCXS matrices after product multiplication.
    For simplicity, it tests only tensors with number of dimension = 3.
    Parameters
    ----------
    s: sparse product matrix
    x: dense product matrix
    """
    rng = np.random.default_rng()
    row = rng.integers(s.shape[s.ndim - 2])
    assert np.allclose(s[0][row].data, [num for num in x[0][row] if num != 0])

    # regression test
    col = s.shape[s.ndim - 1]
    for i in range(len(s.indices) // col):
        j = col * i
        k = col * (1 + i)
        s.data[j:k] = s.data[j:k][::-1]
        s.indices[j:k] = s.indices[j:k][::-1]
    assert np.array_equal(s[0][row].data, np.array([]))


def assert_nnz(s, x):
    fill_value = s.fill_value if hasattr(s, "fill_value") else _zero_of_dtype(s.dtype)

    assert np.sum(~equivalent(x, fill_value)) == s.nnz


def is_canonical(x):
    return not x.shape or ((np.diff(x.linear_loc()) > 0).all() and not equivalent(x.data, x.fill_value).any())


def _zero_of_dtype(dtype):
    """
    Creates a ()-shaped 0-dimensional zero array of a given dtype.

    Parameters
    ----------
    dtype : numpy.dtype
        The dtype for the array.

    Returns
    -------
    np.ndarray
        The zero array.
    """
    return np.zeros((), dtype=dtype)[()]


@numba.jit(nopython=True, nogil=True)
def algD(n, N, random_state):
    """
    Random Sampling without Replacement
    Alg D proposed by J.S. Vitter in Faster Methods for Random Sampling
    Parameters:
        n = sample size (nnz)
        N = size of system (elements)
        random_state = seed for random number generation
    """
    n = np.intp(n + 1)
    N = np.intp(N)
    qu1 = N - n + 1
    Vprime = np.exp(np.log(random_state.random()) / n)
    i = 0
    arr = np.zeros(n - 1, dtype=np.intp)
    arr[-1] = -1
    while n > 1:
        nmin1inv = 1 / (n - 1)
        while True:
            while True:
                X = N * (1 - Vprime)
                S = np.intp(X)
                if qu1 > S:
                    break
                Vprime = np.exp(np.log(random_state.random()) / n)
            y1 = np.exp(np.log(random_state.random() * N / qu1) * nmin1inv)
            Vprime = y1 * (1 - X / N) * (qu1 / (qu1 - S))
            if Vprime <= 1:
                break
            y2 = 1
            top = N - 1
            if n - 1 > S:
                bottom = N - n
                limit = N - S
            else:
                bottom = N - S - 1
                limit = qu1

            t = N - 1
            while t >= limit:
                y2 *= top / bottom
                top -= 1
                bottom -= 1
                t -= 1
            if y1 * np.exp(np.log(y2) / nmin1inv) <= N / (N - X):
                Vprime = np.exp(np.log(random_state.random()) * nmin1inv)
                break
            Vprime = np.exp(np.log(random_state.random()) / n)
        arr[i] = arr[i - 1] + S + 1
        i += 1
        N = N - S - 1
        n -= 1
        qu1 = qu1 - S
    return arr


@numba.jit(nopython=True, nogil=True)
def algA(n, N, random_state):
    """
    Random Sampling without Replacement
    Alg A proposed by J.S. Vitter in Faster Methods for Random Sampling
    Parameters:
        n = sample size (nnz)
        N = size of system (elements)
        random_state = seed for random number generation
    """
    n = np.intp(n)
    N = np.intp(N)
    arr = np.zeros(n, dtype=np.intp)
    arr[-1] = -1
    i = 0
    top = N - n
    while n >= 2:
        V = random_state.random()
        S = 0
        quot = top / N
        while quot > V:
            S += 1
            top -= 1
            N -= 1
            quot *= top / N
        arr[i] = arr[i - 1] + S + 1
        i += 1
        N -= 1
        n -= 1
    S = np.intp(N * random_state.random())
    arr[i] = arr[i - 1] + S + 1
    i += 1
    return arr


@numba.jit(nopython=True, nogil=True)
def reverse(inv, N):
    """
    If density of random matrix is greater than .5, it is faster to sample states not included
    Parameters:
        arr = np.array(np.intp) of indices to be excluded from sample
        N = size of the system (elements)
    """
    N = np.intp(N)
    a = np.zeros(np.intp(N - len(inv)), dtype=np.intp)
    j = 0
    k = 0
    for i in range(N):
        if j == len(inv):
            a[k:] = np.arange(i, N)
            break
        if i == inv[j]:
            j += 1
        else:
            a[k] = i
            k += 1
    return a


default_rng = np.random.default_rng()


def random(
    shape,
    density=None,
    nnz=None,
    random_state=None,
    data_rvs=None,
    format="coo",
    fill_value=None,
    idx_dtype=None,
    **kwargs,
):
    """Generate a random sparse multidimensional array

    Parameters
    ----------
    shape : Tuple[int]
        Shape of the array
    density : float, optional
        Density of the generated array; default is 0.01.
        Mutually exclusive with `nnz`.
    nnz : int, optional
        Number of nonzero elements in the generated array.
        Mutually exclusive with `density`.
    random_state : Union[numpy.random.Generator, int], optional
        Random number generator or random seed. If not given, the
        singleton numpy.random will be used. This random state will be used
        for sampling the sparsity structure, but not necessarily for sampling
        the values of the structurally nonzero entries of the matrix.
    data_rvs : Callable
        Data generation callback. Must accept one single parameter: number of
        :code:`nnz` elements, and return one single NumPy array of exactly
        that length.
    format : str
        The format to return the output array in.
    fill_value : scalar
        The fill value of the output array.

    Returns
    -------
    SparseArray
        The generated random matrix.

    See Also
    --------
    :obj:`scipy.sparse.rand` : Equivalent Scipy function.
    :obj:`numpy.random.rand` : Similar Numpy function.

    Examples
    --------
    >>> from sparse import random
    >>> from scipy import stats
    >>> rvs = lambda x: stats.poisson(25, loc=10).rvs(x, random_state=np.random.RandomState(1))
    >>> s = random((2, 3, 4), density=0.25, random_state=np.random.RandomState(1), data_rvs=rvs)
    >>> s.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[[ 0,  0,  0,   0],
            [34,  0, 29,  30],
            [ 0,  0,  0,  0]],
    <BLANKLINE>
           [[33,  0,  0, 34],
            [34,  0,  0,  0],
            [ 0,  0,  0,  0]]])

    """
    # Copied, in large part, from scipy.sparse.random
    # See https://github.com/scipy/scipy/blob/main/LICENSE.txt
    from ._coo import COO

    if density is not None and nnz is not None:
        raise ValueError("'density' and 'nnz' are mutually exclusive")

    if density is None:
        density = 0.01
    if not (0 <= density <= 1):
        raise ValueError(f"density {density} is not in the unit interval")

    elements = np.prod(shape, dtype=np.intp)

    if nnz is None:
        nnz = int(elements * density)
    if not (0 <= nnz <= elements):
        raise ValueError(f"cannot generate {nnz} nonzero elements for an array with {elements} total elements")

    if random_state is None:
        random_state = default_rng
    elif isinstance(random_state, Integral):
        random_state = np.random.default_rng(random_state)
    if data_rvs is None:
        data_rvs = random_state.random

    if nnz == elements or density >= 1:
        ind = np.arange(elements)
    elif nnz < 2:
        ind = random_state.choice(elements, nnz)
    # Faster to find non-sampled indices and remove them for dens > .5
    elif elements - nnz < 2:
        ind = reverse(random_state.choice(elements, elements - nnz), elements)
    elif nnz > elements / 2:
        nnztemp = elements - nnz
        # Using algorithm A for dens > .1
        if elements > 10 * nnztemp:
            ind = reverse(
                algD(nnztemp, elements, random_state),
                elements,
            )
        else:
            ind = reverse(
                algA(nnztemp, elements, random_state),
                elements,
            )
    else:
        ind = algD(nnz, elements, random_state) if elements > 10 * nnz else algA(nnz, elements, random_state)
    data = data_rvs(nnz)

    ar = COO(
        ind[None, :],
        data,
        shape=elements,
        fill_value=fill_value,
    ).reshape(shape)

    if idx_dtype:
        if can_store(idx_dtype, max(shape)):
            ar.coords = ar.coords.astype(idx_dtype)
        else:
            raise ValueError(f"cannot cast array with shape {shape} to dtype {idx_dtype}.")

    return ar.asformat(format, **kwargs)


def isscalar(x):
    from ._sparse_array import SparseArray

    return not isinstance(x, SparseArray) and np.isscalar(x)


def random_value_array(value, fraction):
    def replace_values(n):
        i = int(n * fraction)

        ar = np.empty((n,), dtype=np.float64)
        ar[:i] = value
        ar[i:] = default_rng.random(n - i)
        return ar

    return replace_values


def normalize_axis(axis, ndim):
    """
    Normalize negative axis indices to their positive counterpart for a given
    number of dimensions.

    Parameters
    ----------
    axis : Union[int, Iterable[int], None]
        The axis indices.
    ndim : int
        Number of dimensions to normalize axis indices against.

    Returns
    -------
    axis
        The normalized axis indices.
    """
    if axis is None:
        return None

    if isinstance(axis, Integral):
        axis = int(axis)
        if axis < 0:
            axis += ndim

        if axis >= ndim or axis < 0:
            raise ValueError(f"Invalid axis index {axis} for ndim={ndim}")

        return axis

    if isinstance(axis, Iterable):
        if not all(isinstance(a, Integral) for a in axis):
            raise ValueError(f"axis {axis} not understood")

        return tuple(normalize_axis(a, ndim) for a in axis)

    raise ValueError(f"axis {axis} not understood")


def equivalent(x, y, /, loose=False):
    """
    Checks the equivalence of two scalars or arrays with broadcasting. Assumes
    a consistent dtype.

    Parameters
    ----------
    x : scalar or numpy.ndarray
    y : scalar or numpy.ndarray

    Returns
    -------
    equivalent : scalar or numpy.ndarray
        The element-wise comparison of where two arrays are equivalent.

    Examples
    --------
    >>> equivalent(1, 1)
    True
    >>> equivalent(np.nan, np.nan + 1)
    True
    >>> equivalent(1, 2)
    False
    >>> equivalent(np.inf, np.inf)
    True
    >>> equivalent(np.PZERO, np.NZERO)
    False
    """
    x = np.asarray(x)
    y = np.asarray(y)
    # Can't contain NaNs
    dt = np.result_type(x.dtype, y.dtype)
    if not any(np.issubdtype(dt, t) for t in [np.floating, np.complexfloating]):
        return x == y

    if loose:
        if np.issubdtype(dt, np.complexfloating):
            return equivalent(x.real, y.real) & equivalent(x.imag, y.imag)

        # TODO: Rec array handling
        return (x == y) | ((x != x) & (y != y))

    if x.size == 0 or y.size == 0:
        shape = np.broadcast_shapes(x.shape, y.shape)
        return np.empty(shape, dtype=np.bool_)
    x, y = np.broadcast_arrays(x[..., None], y[..., None])
    return (x.astype(dt).view(np.uint8) == y.astype(dt).view(np.uint8)).all(axis=-1)


# copied from zarr
# See https://github.com/zarr-developers/zarr-python/blob/main/zarr/util.py
def human_readable_size(size):
    if size < 2**10:
        return str(size)
    if size < 2**20:
        return f"{size / 2**10:.1f}K"
    if size < 2**30:
        return f"{size / 2**20:.1f}M"
    if size < 2**40:
        return f"{size / 2**30:.1f}G"
    if size < 2**50:
        return f"{size / 2**40:.1f}T"

    return f"{size / 2**50:.1f}P"


def html_table(arr):
    table = ["<table><tbody>"]
    headings = ["Format", "Data Type", "Shape", "nnz", "Density", "Read-only"]

    density = np.float64(arr.nnz) / np.float64(arr.size)

    info = [
        type(arr).__name__.lower(),
        str(arr.dtype),
        str(arr.shape),
        str(arr.nnz),
        str(density),
    ]

    # read-only
    info.append(str(not hasattr(arr, "__setitem__")))

    if hasattr(arr, "nbytes"):
        headings.append("Size")
        info.append(human_readable_size(arr.nbytes))
        headings.append("Storage ratio")
        info.append(
            f"{np.float64(arr.nbytes) / np.float64(reduce(operator.mul, arr.shape, 1) * arr.dtype.itemsize):.2f}"
        )

    # compressed_axes
    if type(arr).__name__ == "GCXS":
        headings.append("Compressed Axes")
        info.append(str(arr.compressed_axes))

    for h, i in zip(headings, info, strict=True):
        table.append(f'<tr><th style="text-align: left">{h}</th><td style="text-align: left">{i}</td></tr>')
    table.append("</tbody></table>")
    return "".join(table)


def check_compressed_axes(ndim, compressed_axes):
    """
    Checks if the given compressed_axes are compatible with the shape of the array.

    Parameters
    ----------
    ndim : int
    compressed_axes : Iterable

    Raises
    ------
    ValueError
        If the compressed_axes are incompatible with the number of dimensions
    """
    if compressed_axes is None:
        return
    if isinstance(ndim, Iterable):
        ndim = len(ndim)
    if not isinstance(compressed_axes, Iterable):
        raise ValueError("compressed_axes must be an iterable")
    if len(compressed_axes) == ndim:
        raise ValueError("cannot compress all axes")
    if not np.array_equal(list(set(compressed_axes)), compressed_axes):
        raise ValueError("axes must be sorted without repeats")
    if not all(isinstance(a, Integral) for a in compressed_axes):
        raise ValueError("axes must be represented with integers")
    if min(compressed_axes) < 0 or max(compressed_axes) >= ndim:
        raise ValueError("axis out of range")


def check_fill_value(x, /, *, accept_fv=None) -> None:
    """Raises on incorrect fill-values.

    Parameters
    ----------
    x : SparseArray
        The array to check
    accept_fv : scalar or list of scalar, optional
        The list of accepted fill-values. The default accepts only zero.

    Raises
    ------
    ValueError
        If the fill-value doesn't match.
    """
    if accept_fv is None:
        accept_fv = [0]

    if not isinstance(accept_fv, Iterable):
        accept_fv = [accept_fv]

    if not any(equivalent(fv, x.fill_value, loose=True) for fv in accept_fv):
        raise ValueError(f"{x.fill_value=} but should be in {accept_fv}.")


def check_zero_fill_value(*args):
    """
    Checks if all the arguments have zero fill-values.

    Parameters
    ----------
    *args : Iterable[SparseArray]

    Raises
    ------
    ValueError
        If all arguments don't have zero fill-values.

    Examples
    --------
    >>> import sparse
    >>> s1 = sparse.random((10,), density=0.5)
    >>> s2 = sparse.random((10,), density=0.5, fill_value=0.5)
    >>> check_zero_fill_value(s1)
    >>> check_zero_fill_value(s2)
    Traceback (most recent call last):
        ...
    ValueError: This operation requires zero fill values, but argument 0 had a fill value of 0.5.
    >>> check_zero_fill_value(s1, s2)
    Traceback (most recent call last):
        ...
    ValueError: This operation requires zero fill values, but argument 1 had a fill value of 0.5.
    """
    for i, arg in enumerate(args):
        if hasattr(arg, "fill_value") and not equivalent(arg.fill_value, _zero_of_dtype(arg.dtype)):
            raise ValueError(
                "This operation requires zero fill values, "
                f"but argument {i:d} had a fill value of {arg.fill_value!s}."
            )


def check_consistent_fill_value(arrays):
    """
    Checks if all the arguments have consistent fill-values.

    Parameters
    ----------
    args : Iterable[SparseArray]

    Raises
    ------
    ValueError
        If all elements of :code:`arrays` don't have the same fill-value.

    Examples
    --------
    >>> import sparse
    >>> s1 = sparse.random((10,), density=0.5, fill_value=0.1)
    >>> s2 = sparse.random((10,), density=0.5, fill_value=0.5)
    >>> check_consistent_fill_value([s1, s1])
    >>> check_consistent_fill_value([s1, s2])  # doctest: +NORMALIZE_WHITESPACE
    Traceback (most recent call last):
        ...
    ValueError: This operation requires consistent fill-values, but argument 1 had a fill value of 0.5,\
        which is different from a fill_value of 0.1 in the first argument.
    """
    arrays = list(arrays)
    from ._sparse_array import SparseArray

    if not all(isinstance(s, SparseArray) for s in arrays):
        raise ValueError("All arrays must be instances of SparseArray.")
    if len(arrays) == 0:
        raise ValueError("At least one array required.")

    fv = arrays[0].fill_value

    for i, arg in enumerate(arrays):
        if not equivalent(fv, arg.fill_value):
            raise ValueError(
                "This operation requires consistent fill-values, "
                f"but argument {i:d} had a fill value of {arg.fill_value!s}, which "
                f"is different from a fill_value of {fv!s} in the first "
                "argument."
            )


def get_out_dtype(arr, scalar):
    out_type = arr.dtype
    if not can_store(out_type, scalar):
        out_type = np.min_scalar_type(scalar)
    return out_type


def can_store(dtype, scalar):
    try:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            warnings.filterwarnings("error", "out-of-bound", DeprecationWarning)
            return np.array(scalar, dtype=dtype) == np.array(scalar)
    except (ValueError, OverflowError):
        return False


def is_unsigned_dtype(dtype):
    return np.issubdtype(dtype, np.integer) and np.iinfo(dtype).min == 0


def convert_format(format):
    from ._sparse_array import SparseArray

    if isinstance(format, type):
        if not issubclass(format, SparseArray):
            raise ValueError(f"Invalid format: {format}")
        return format.__name__.lower()
    if isinstance(format, str):
        return format

    raise ValueError(f"Invalid format: {format}")