1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
import itertools
import operator
import sparse
import pytest
import numpy as np
DENSITY = 0.01
def format_id(format):
return f"{format=}"
@pytest.mark.parametrize("format", ["coo", "gcxs"])
def test_matmul(benchmark, sides, format, seed, max_size, ids=format_id):
m, n, p = sides
if m * n >= max_size or n * p >= max_size:
pytest.skip()
rng = np.random.default_rng(seed=seed)
x = sparse.random((m, n), density=DENSITY, format=format, random_state=rng)
y = sparse.random((n, p), density=DENSITY, format=format, random_state=rng)
x @ y # Numba compilation
@benchmark
def bench():
x @ y
def get_test_id(params):
side, rank, format = params
return f"{side=}-{rank=}-{format=}"
@pytest.fixture(params=itertools.product([100, 500, 1000], [1, 2, 3, 4], ["coo", "gcxs"]), ids=get_test_id)
def elemwise_args(request, seed, max_size):
side, rank, format = request.param
if side**rank >= max_size:
pytest.skip()
rng = np.random.default_rng(seed=seed)
shape = (side,) * rank
x = sparse.random(shape, density=DENSITY, format=format, random_state=rng)
y = sparse.random(shape, density=DENSITY, format=format, random_state=rng)
return x, y
@pytest.mark.parametrize("f", [operator.add, operator.mul])
def test_elemwise(benchmark, f, elemwise_args):
x, y = elemwise_args
f(x, y)
@benchmark
def bench():
f(x, y)
def get_elemwise_ids(params):
side, format = params
return f"{side=}-{format=}"
@pytest.fixture(params=itertools.product([100, 500, 1000], ["coo", "gcxs"]), ids=get_elemwise_ids)
def elemwise_broadcast_args(request, seed, max_size):
side, format = request.param
if side**2 >= max_size:
pytest.skip()
rng = np.random.default_rng(seed=seed)
x = sparse.random((side, 1, side), density=DENSITY, format=format, random_state=rng)
y = sparse.random((side, side), density=DENSITY, format=format, random_state=rng)
return x, y
@pytest.mark.parametrize("f", [operator.add, operator.mul])
def test_elemwise_broadcast(benchmark, f, elemwise_broadcast_args):
x, y = elemwise_broadcast_args
f(x, y)
@benchmark
def bench():
f(x, y)
@pytest.fixture(params=itertools.product([100, 500, 1000], [1, 2, 3], ["coo", "gcxs"]), ids=get_test_id)
def indexing_args(request, seed, max_size):
side, rank, format = request.param
if side**rank >= max_size:
pytest.skip()
rng = np.random.default_rng(seed=seed)
shape = (side,) * rank
return sparse.random(shape, density=DENSITY, format=format, random_state=rng)
def test_index_scalar(benchmark, indexing_args):
x = indexing_args
side = x.shape[0]
rank = x.ndim
x[(side // 2,) * rank] # Numba compilation
@benchmark
def bench():
x[(side // 2,) * rank]
def test_index_slice(benchmark, indexing_args):
x = indexing_args
side = x.shape[0]
rank = x.ndim
x[(slice(side // 2),) * rank] # Numba compilation
@benchmark
def bench():
x[(slice(side // 2),) * rank]
def test_index_fancy(benchmark, indexing_args, seed):
x = indexing_args
side = x.shape[0]
rng = np.random.default_rng(seed=seed)
index = rng.integers(0, side, size=(side // 2,))
x[index] # Numba compilation
@benchmark
def bench():
x[index]
def get_sides_ids(param):
m, n, p = param
return f"{m=}-{n=}-{p=}"
@pytest.fixture(params=itertools.product([200, 500, 1000], [200, 500, 1000], [200, 500, 1000]), ids=get_sides_ids)
def sides(request):
m, n, p = request.param
return m, n, p
@pytest.fixture(params=([(0, "coo"), (0, "gcxs"), (1, "gcxs")]), ids=["coo", "gcxs-0-axis", "gcxs-1-axis"])
def densemul_args(request, sides, seed, max_size):
compressed_axis, format = request.param
m, n, p = sides
if m * n >= max_size or n * p >= max_size:
pytest.skip()
rng = np.random.default_rng(seed=seed)
if format == "coo":
x = sparse.random((m, n), density=DENSITY / 10, format=format, random_state=rng)
else:
x = sparse.random((m, n), density=DENSITY / 10, format=format, random_state=rng).change_compressed_axes(
(compressed_axis,)
)
t = rng.random((n, p))
return x, t
def test_gcxs_dot_ndarray(benchmark, densemul_args):
x, t = densemul_args
# Numba compilation
x @ t
@benchmark
def bench():
x @ t
|