File: elemwise_example.py

package info (click to toggle)
python-sparse 0.17.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,816 kB
  • sloc: python: 11,223; sh: 54; javascript: 10; makefile: 8
file content (69 lines) | stat: -rw-r--r-- 2,053 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import importlib
import operator
import os

import sparse

from utils import benchmark

import numpy as np
import scipy.sparse as sps

LEN = 10000
DENSITY = 0.001
ITERS = 3
rng = np.random.default_rng(0)


if __name__ == "__main__":
    print("Elementwise Example:\n")

    for func_name in ["multiply", "add", "greater_equal"]:
        print(f"{func_name} benchmark:\n")

        s1_sps = sps.random(LEN, LEN, format="csr", density=DENSITY, random_state=rng) * 10
        s1_sps.sum_duplicates()
        s2_sps = sps.random(LEN, LEN, format="csr", density=DENSITY, random_state=rng) * 10
        s2_sps.sum_duplicates()

        # ======= Finch =======
        os.environ[sparse._ENV_VAR_NAME] = "Finch"
        importlib.reload(sparse)

        s1 = sparse.asarray(s1_sps.asformat("csc"), format="csc")
        s2 = sparse.asarray(s2_sps.asformat("csc"), format="csc")

        func = getattr(sparse, func_name)

        # Compile & Benchmark
        result_finch = benchmark(func, args=[s1, s2], info="Finch", iters=ITERS)

        # ======= Numba =======
        os.environ[sparse._ENV_VAR_NAME] = "Numba"
        importlib.reload(sparse)

        s1 = sparse.asarray(s1_sps)
        s2 = sparse.asarray(s2_sps)

        func = getattr(sparse, func_name)

        # Compile & Benchmark
        result_numba = benchmark(func, args=[s1, s2], info="Numba", iters=ITERS)

        # ======= SciPy =======
        s1 = s1_sps
        s2 = s2_sps

        if func_name == "multiply":
            func, args = s1.multiply, [s2]
        elif func_name == "add":
            func, args = operator.add, [s1, s2]
        elif func_name == "greater_equal":
            func, args = operator.ge, [s1, s2]

        # Compile & Benchmark
        result_scipy = benchmark(func, args=args, info="SciPy", iters=ITERS)

        np.testing.assert_allclose(result_numba.todense(), result_scipy.toarray())
        np.testing.assert_allclose(result_finch.todense(), result_numba.todense())
        np.testing.assert_allclose(result_finch.todense(), result_scipy.toarray())