1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
import ctypes
import dataclasses
import enum
import itertools
import re
import typing
from mlir_finch import ir
from mlir_finch.dialects import sparse_tensor
import numpy as np
from ._common import (
_hold_ref,
fn_cache,
free_memref,
get_nd_memref_descr,
numpy_to_ranked_memref,
ranked_memref_to_numpy,
)
from ._core import ctx
from ._dtypes import DType, asdtype
_CAMEL_TO_SNAKE = [re.compile("(.)([A-Z][a-z]+)"), re.compile("([a-z0-9])([A-Z])")]
__all__ = ["LevelProperties", "LevelFormat", "ConcreteFormat", "Level", "get_concrete_format"]
def _camel_to_snake(name: str) -> str:
for exp in _CAMEL_TO_SNAKE:
name = exp.sub(r"\1_\2", name)
return name.lower()
class LevelProperties(enum.Flag):
NonOrdered = enum.auto()
NonUnique = enum.auto()
SOA = enum.auto()
def build(self) -> list[sparse_tensor.LevelProperty]:
return [getattr(sparse_tensor.LevelProperty, _camel_to_snake(p.name)) for p in type(self) if p in self]
class LevelFormat(enum.Enum):
Dense = "dense"
Compressed = "compressed"
Singleton = "singleton"
def build(self) -> sparse_tensor.LevelFormat:
return getattr(sparse_tensor.LevelFormat, self.value)
@dataclasses.dataclass(eq=True, frozen=True)
class Level:
format: LevelFormat
properties: LevelProperties = LevelProperties(0)
def build(self):
return sparse_tensor.EncodingAttr.build_level_type(self.format.build(), self.properties.build())
@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class ConcreteFormat:
levels: tuple[Level, ...]
order: tuple[int, ...]
pos_width: int
crd_width: int
dtype: DType
@property
def storage_rank(self) -> int:
return len(self.levels)
@property
def rank(self) -> int:
return self.storage_rank
def __post_init__(self):
if sorted(self.order) != list(range(self.rank)):
raise ValueError(f"`sorted(self.order) != list(range(self.rank))`, `{self.order=}`, `{self.rank=}`.")
@fn_cache
def _get_mlir_type(self, *, shape: tuple[int, ...]) -> ir.RankedTensorType:
if len(shape) != self.rank:
raise ValueError(f"`len(shape) != self.rank`, {shape=}, {self.rank=}")
with ir.Location.unknown(ctx):
mlir_levels = [level.build() for level in self.levels]
mlir_order = list(self.order)
mlir_reverse_order = [0] * self.rank
for i, r in enumerate(mlir_order):
mlir_reverse_order[r] = i
dtype = self.dtype._get_mlir_type()
encoding = sparse_tensor.EncodingAttr.get(
mlir_levels,
ir.AffineMap.get_permutation(mlir_order),
ir.AffineMap.get_permutation(mlir_reverse_order),
self.pos_width,
self.crd_width,
)
return ir.RankedTensorType.get(list(shape), dtype, encoding)
@fn_cache
def _get_ctypes_type(self, *, owns_memory=False):
ptr_dtype = asdtype(getattr(np, f"int{self.pos_width}"))
idx_dtype = asdtype(getattr(np, f"int{self.crd_width}"))
def get_fields():
fields = []
compressed_counter = 0
singleton_counter = 0
for level, next_level in itertools.zip_longest(self.levels, self.levels[1:]):
if LevelFormat.Compressed == level.format:
compressed_counter += 1
fields.append((f"pointers_to_{compressed_counter}", get_nd_memref_descr(1, ptr_dtype)))
if next_level is not None and LevelFormat.Singleton == next_level.format:
singleton_counter += 1
fields.append(
(
f"indices_{compressed_counter}_coords_{singleton_counter}",
get_nd_memref_descr(1, idx_dtype),
)
)
else:
fields.append((f"indices_{compressed_counter}", get_nd_memref_descr(1, idx_dtype)))
if LevelFormat.Singleton == level.format:
singleton_counter += 1
fields.append(
(f"indices_{compressed_counter}_coords_{singleton_counter}", get_nd_memref_descr(1, idx_dtype))
)
fields.append(("values", get_nd_memref_descr(1, self.dtype)))
return fields
storage_format = self
class Storage(ctypes.Structure):
_fields_ = get_fields()
def to_module_arg(self) -> list:
return [ctypes.pointer(ctypes.pointer(f)) for f in self.get__fields_()]
def get__fields_(self) -> list:
return [getattr(self, field[0]) for field in self._fields_]
def get_constituent_arrays(self) -> tuple[np.ndarray, ...]:
arrays = tuple(ranked_memref_to_numpy(field) for field in self.get__fields_())
for arr in arrays:
_hold_ref(arr, self)
return arrays
def get_storage_format(self) -> ConcreteFormat:
return storage_format
@classmethod
def from_constituent_arrays(cls, arrs: list[np.ndarray]) -> "Storage":
storage = cls(*(numpy_to_ranked_memref(arr) for arr in arrs))
for arr in arrs:
_hold_ref(storage, arr)
return storage
if owns_memory:
def __del__(self) -> None:
for field in self.get__fields_():
free_memref(field)
return Storage
@dataclasses.dataclass(eq=True, frozen=True, kw_only=True)
class FormatFactory:
levels: tuple[Level, ...] | None = None
order: typing.Literal["C", "F"] | tuple[int, ...] = "C"
pos_width: int = 64
crd_width: int = 64
dtype: DType | None = None
def is_ready(self) -> bool:
fields = dataclasses.fields(self)
return all(getattr(self, f.name) is not None for f in fields)
def build(self) -> ConcreteFormat:
if not self.is_ready():
raise RuntimeError("This factory is not ready. All fields must be non-None.")
return get_concrete_format(
levels=self.levels,
order=self.order,
pos_width=self.pos_width,
crd_width=self.crd_width,
dtype=self.dtype,
)
@classmethod
def _get_levels_from_ndim(cls, ndim: int, /) -> tuple[Level, ...]:
raise TypeError(f"`{cls.__name__}` doesn't implement this method.")
def with_ndim(self, ndim: int, /, *, canonical: bool = True) -> "FormatFactory":
if ndim < 0:
raise ValueError(f"`ndim < 0`, `{ndim=}`.")
levels = self._get_levels_from_ndim(ndim)
if not canonical:
levels = tuple(
dataclasses.replace(
level, properties=level.properties | LevelProperties.NonOrdered | LevelProperties.NonUnique
)
for level in levels
)
assert len(levels) == ndim
return self.with_levels(levels)
def with_levels(self, levels: tuple[Level, ...], /) -> "FormatFactory":
out = dataclasses.replace(self, levels=levels)
out._check_consistency()
return out
def _check_consistency(self) -> None:
order = self.order
if isinstance(order, str):
if order in {"C", "F"}:
return
raise ValueError(f"Invalid order, `{order=}`.")
if sorted(order) != list(range(len(order))):
raise ValueError(f"`sorted(order) != list(range(len(order)))`, `{order=}`.")
levels = self.levels
if levels is not None and len(levels) != len(order):
raise ValueError(f"`levels is not None and len(levels) != len(order)`, `{order=}`, `{levels=}`.")
def with_order(self, order: typing.Literal["C", "F"] | tuple[int, ...], /):
out = dataclasses.replace(self, order=order)
out._check_consistency()
return out
def with_ptr_width(self, width: int, /) -> "FormatFactory":
return dataclasses.replace(self, pos_width=width, crd_width=width)
def with_pos_width(self, width: int, /) -> "FormatFactory":
return dataclasses.replace(self, pos_width=width)
def with_crd_width(self, width: int, /) -> "FormatFactory":
return dataclasses.replace(self, crd_width=width)
def with_dtype(self, dtype: DType, /) -> "FormatFactory":
return dataclasses.replace(self, dtype=dtype)
@classmethod
def is_this_format(cls, format: ConcreteFormat) -> bool:
levels_self = cls._get_levels_from_ndim(format.storage_rank)
levels_other = format.levels
return all(
dataclasses.replace(l1, properties=l1.properties | LevelProperties.NonOrdered | LevelProperties.NonUnique)
== dataclasses.replace(
l2, properties=l2.properties | LevelProperties.NonOrdered | LevelProperties.NonUnique
)
for l1, l2 in zip(levels_self, levels_other, strict=True)
)
class Coo(FormatFactory):
@classmethod
def _get_levels_from_ndim(cls, ndim: int, /) -> tuple[Level, ...]:
if ndim == 0:
return ()
level_base = Level(LevelFormat.Compressed)
level_middle = Level(LevelFormat.Singleton, LevelProperties.SOA)
levels = []
for i in range(ndim):
level = level_base if i == 0 else level_middle
if i != ndim - 1:
level = dataclasses.replace(level, properties=level.properties | LevelProperties.NonUnique)
levels.append(level)
return tuple(levels)
class Csf(FormatFactory):
@classmethod
def _get_levels_from_ndim(self, ndim: int, /) -> tuple[Level, ...]:
if ndim == 0:
return ()
level_middle = Level(LevelFormat.Compressed)
level_base = Level(LevelFormat.Dense)
levels = []
for i in range(ndim):
level = level_base if i == 0 else level_middle
levels.append(level)
return tuple(levels)
class Dense(FormatFactory):
@classmethod
def _get_levels_from_ndim(self, ndim: int, /) -> tuple[Level, ...]:
return (Level(LevelFormat.Dense),) * ndim
def get_concrete_format(
*,
levels: tuple[Level, ...],
order: typing.Literal["C", "F"] | tuple[int, ...],
pos_width: int,
crd_width: int,
dtype: DType,
) -> ConcreteFormat:
levels = tuple(levels)
if isinstance(order, str):
if order == "C":
order = tuple(range(len(levels)))
if order == "F":
order = tuple(reversed(range(len(levels))))
return _get_concrete_format(
levels=levels,
order=order,
pos_width=int(pos_width),
crd_width=int(crd_width),
dtype=asdtype(dtype),
)
@fn_cache
def _get_concrete_format(
*,
levels: tuple[Level, ...],
order: tuple[int, ...],
pos_width: int,
crd_width: int,
dtype: DType,
) -> ConcreteFormat:
return ConcreteFormat(
levels=levels,
order=order,
pos_width=pos_width,
crd_width=crd_width,
dtype=dtype,
)
def _is_sparse_level(lvl: Level | LevelFormat, /) -> bool:
assert isinstance(lvl, Level | LevelFormat)
if isinstance(lvl, Level):
lvl = lvl.format
return LevelFormat.Dense != lvl
def _count_sparse_levels(format: ConcreteFormat) -> int:
return sum(_is_sparse_level(lvl) for lvl in format.levels)
def _count_dense_levels(format: ConcreteFormat) -> int:
return sum(not _is_sparse_level(lvl) for lvl in format.levels)
def _get_sparse_dense_levels(
*, n_sparse: int | None = None, n_dense: int | None = None, ndim: int | None = None
) -> tuple[Level, ...]:
if (n_sparse is not None) + (n_dense is not None) + (ndim is not None) != 2:
assert n_sparse is not None and n_dense is not None and ndim is not None #
assert n_sparse + n_dense == ndim
if n_sparse is None:
n_sparse = ndim - n_dense
if n_dense is None:
n_dense = ndim - n_sparse
if ndim is None:
ndim = n_dense + n_sparse
assert ndim >= 0
assert n_dense >= 0
assert n_sparse >= 0
return (Level(LevelFormat.Dense),) * n_dense + (Level(LevelFormat.Compressed),) * n_sparse
def _determine_format(
*formats: ConcreteFormat, dtype: DType, union: bool, out_ndim: int | None = None
) -> ConcreteFormat:
"""Determines the output format from a group of input formats.
1. Counts the sparse levels for `union=True`, and dense ones for `union=False`.
2. Gets the max number of counted levels for each format.
3. Constructs a format with rank of `out_ndim` (max rank of inputs is taken if it's `None`).
If `union=False` counted levels is the number of sparse levels, otherwise dense.
Sparse levels are replaced with `LevelFormat.Compressed`.
Returns
-------
StorageFormat
Output storage format.
"""
if len(formats) == 0:
if out_ndim is None:
out_ndim = 0
return get_concrete_format(
levels=(Level(LevelFormat.Dense if union else LevelFormat.Compressed),) * out_ndim,
order="C",
pos_width=64,
crd_width=64,
dtype=dtype,
)
if out_ndim is None:
out_ndim = max(fmt.rank for fmt in formats)
pos_width = 0
crd_width = 0
counter = _count_sparse_levels if not union else _count_dense_levels
n_counted = None
order = ()
for fmt in formats:
n_counted = counter(fmt) if n_counted is None else max(n_counted, counter(fmt))
pos_width = max(pos_width, fmt.pos_width)
crd_width = max(crd_width, fmt.crd_width)
if order != "C":
if fmt.order[: len(order)] == order:
order = fmt.order
elif order[: len(fmt.order)] != fmt.order:
order = "C"
if not isinstance(order, str):
order = order + tuple(range(len(order), out_ndim))
order = order[:out_ndim]
if out_ndim < n_counted:
n_counted = out_ndim
n_sparse = n_counted if not union else out_ndim - n_counted
levels = _get_sparse_dense_levels(n_sparse=n_sparse, ndim=out_ndim)
return get_concrete_format(
levels=levels,
order=order,
pos_width=pos_width,
crd_width=crd_width,
dtype=dtype,
)
|