File: core.py

package info (click to toggle)
python-sparse 0.17.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,816 kB
  • sloc: python: 11,223; sh: 54; javascript: 10; makefile: 8
file content (1654 lines) | stat: -rw-r--r-- 51,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
import copy as _copy
import operator
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from functools import reduce

import numba

import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin

from .._sparse_array import SparseArray
from .._umath import broadcast_to
from .._utils import (
    _zero_of_dtype,
    can_store,
    check_fill_value,
    check_zero_fill_value,
    equivalent,
    normalize_axis,
)
from .indexing import getitem


class COO(SparseArray, NDArrayOperatorsMixin):  # lgtm [py/missing-equals]
    """
    A sparse multidimensional array.

    This is stored in COO format.  It depends on NumPy and Scipy.sparse for
    computation, but supports arrays of arbitrary dimension.

    Parameters
    ----------
    coords : numpy.ndarray (COO.ndim, COO.nnz)
        An array holding the index locations of every value
        Should have shape (number of dimensions, number of non-zeros).
    data : numpy.ndarray (COO.nnz,)
        An array of Values. A scalar can also be supplied if the data is the same across
        all coordinates. If not given, defers to [`sparse.as_coo`][].
    shape : tuple[int] (COO.ndim,)
        The shape of the array.
    has_duplicates : bool, optional
        A value indicating whether the supplied value for [`sparse.COO.coords`][] has
        duplicates. Note that setting this to `False` when `coords` does have
        duplicates may result in undefined behaviour.
    sorted : bool, optional
        A value indicating whether the values in `coords` are sorted. Note
        that setting this to `True` when [`sparse.COO.coords`][] isn't sorted may
        result in undefined behaviour.
    prune : bool, optional
        A flag indicating whether or not we should prune any fill-values present in
        `data`.
    cache : bool, optional
        Whether to enable cacheing for various operations. See
        [`sparse.COO.enable_caching`][].
    fill_value: scalar, optional
        The fill value for this array.

    Attributes
    ----------
    coords : numpy.ndarray (ndim, nnz)
        An array holding the coordinates of every nonzero element.
    data : numpy.ndarray (nnz,)
        An array holding the values corresponding to [`sparse.COO.coords`][].
    shape : tuple[int] (ndim,)
        The dimensions of this array.

    See Also
    --------
    - [`sparse.DOK`][]: A mostly write-only sparse array.
    - [`sparse.as_coo`][]: Convert any given format to [`sparse.COO`][].

    Examples
    --------
    You can create [`sparse.COO`][] objects from Numpy arrays.

    >>> x = np.eye(4, dtype=np.uint8)
    >>> x[2, 3] = 5
    >>> s = COO.from_numpy(x)
    >>> s
    <COO: shape=(4, 4), dtype=uint8, nnz=5, fill_value=0>
    >>> s.data  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 1, 5, 1], dtype=uint8)
    >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 1, 2, 2, 3],
           [0, 1, 2, 3, 3]])

    [`sparse.COO`][] objects support basic arithmetic and binary operations.

    >>> x2 = np.eye(4, dtype=np.uint8)
    >>> x2[3, 2] = 5
    >>> s2 = COO.from_numpy(x2)
    >>> (s + s2).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[2, 0, 0, 0],
           [0, 2, 0, 0],
           [0, 0, 2, 5],
           [0, 0, 5, 2]], dtype=uint8)
    >>> (s * s2).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[1, 0, 0, 0],
           [0, 1, 0, 0],
           [0, 0, 1, 0],
           [0, 0, 0, 1]], dtype=uint8)

    Binary operations support broadcasting.

    >>> x3 = np.zeros((4, 1), dtype=np.uint8)
    >>> x3[2, 0] = 1
    >>> s3 = COO.from_numpy(x3)
    >>> (s * s3).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 1, 5],
           [0, 0, 0, 0]], dtype=uint8)

    [`sparse.COO`][] objects also support dot products and reductions.

    >>> s.dot(s.T).sum(axis=0).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([ 1,  1, 31,  6], dtype=uint64)

    You can use Numpy `ufunc` operations on [`sparse.COO`][] arrays as well.

    >>> np.sum(s, axis=1).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([1, 1, 6, 1], dtype=uint64)
    >>> np.round(np.sqrt(s, dtype=np.float64), decimals=1).todense()  # doctest: +SKIP
    array([[ 1. ,  0. ,  0. ,  0. ],
           [ 0. ,  1. ,  0. ,  0. ],
           [ 0. ,  0. ,  1. ,  2.2],
           [ 0. ,  0. ,  0. ,  1. ]])

    Operations that will result in a dense array will usually result in a different
    fill value, such as the following.

    >>> np.exp(s)
    <COO: shape=(4, 4), dtype=float16, nnz=5, fill_value=1.0>

    You can also create [`sparse.COO`][] arrays from coordinates and data.

    >>> coords = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 3], [0, 3, 2, 0, 1]]
    >>> data = [1, 2, 3, 4, 5]
    >>> s4 = COO(coords, data, shape=(3, 4, 5))
    >>> s4
    <COO: shape=(3, 4, 5), dtype=int64, nnz=5, fill_value=0>

    If the data is same across all coordinates, you can also specify a scalar.

    >>> coords = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 3], [0, 3, 2, 0, 1]]
    >>> data = 1
    >>> s5 = COO(coords, data, shape=(3, 4, 5))
    >>> s5
    <COO: shape=(3, 4, 5), dtype=int64, nnz=5, fill_value=0>

    Following scipy.sparse conventions you can also pass these as a tuple with
    rows and columns

    >>> rows = [0, 1, 2, 3, 4]
    >>> cols = [0, 0, 0, 1, 1]
    >>> data = [10, 20, 30, 40, 50]
    >>> z = COO((data, (rows, cols)), shape=(5, 2))
    >>> z.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[10,  0],
           [20,  0],
           [30,  0],
           [ 0, 40],
           [ 0, 50]])

    You can also pass a dictionary or iterable of index/value pairs. Repeated
    indices imply summation:

    >>> d = {(0, 0, 0): 1, (1, 2, 3): 2, (1, 1, 0): 3}
    >>> COO(d, shape=(2, 3, 4))
    <COO: shape=(2, 3, 4), dtype=int64, nnz=3, fill_value=0>
    >>> L = [((0, 0), 1), ((1, 1), 2), ((0, 0), 3)]
    >>> COO(L, shape=(2, 2)).todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[4, 0],
           [0, 2]])

    You can convert [`sparse.DOK`][] arrays to [`sparse.COO`][] arrays.

    >>> from sparse import DOK
    >>> s6 = DOK((5, 5), dtype=np.int64)
    >>> s6[1:3, 1:3] = [[4, 5], [6, 7]]
    >>> s6
    <DOK: shape=(5, 5), dtype=int64, nnz=4, fill_value=0>
    >>> s7 = s6.asformat("coo")
    >>> s7
    <COO: shape=(5, 5), dtype=int64, nnz=4, fill_value=0>
    >>> s7.todense()  # doctest: +NORMALIZE_WHITESPACE
    array([[0, 0, 0, 0, 0],
           [0, 4, 5, 0, 0],
           [0, 6, 7, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    """

    __array_priority__ = 12

    def __init__(
        self,
        coords,
        data=None,
        shape=None,
        has_duplicates=True,
        sorted=False,
        prune=False,
        cache=False,
        fill_value=None,
        idx_dtype=None,
    ):
        if isinstance(coords, COO):
            self._make_shallow_copy_of(coords)
            if data is not None or shape is not None:
                raise ValueError("If `coords` is `COO`, then no other arguments should be provided.")
            if fill_value is not None:
                self.fill_value = self.data.dtype.type(fill_value)
            return

        self._cache = None
        if cache:
            self.enable_caching()

        if data is None:
            arr = as_coo(coords, shape=shape, fill_value=fill_value, idx_dtype=idx_dtype)
            self._make_shallow_copy_of(arr)
            if cache:
                self.enable_caching()
            return

        self.data = np.asarray(data)
        self.coords = np.asarray(coords)

        if self.coords.ndim == 1:
            if self.coords.size == 0 and shape is not None:
                self.coords = self.coords.reshape((len(shape), len(data)))
            else:
                self.coords = self.coords[None, :]

        if self.data.ndim == 0:
            self.data = np.broadcast_to(self.data, self.coords.shape[1])

        if self.data.ndim != 1:
            raise ValueError("`data` must be a scalar or 1-dimensional.")

        if shape is None:
            raise ValueError("`shape` was not provided.")

        if not isinstance(shape, Iterable):
            shape = (shape,)

        if isinstance(shape, np.ndarray):
            shape = tuple(shape)

        if shape and not self.coords.size:
            self.coords = np.zeros((len(shape) if isinstance(shape, Iterable) else 1, 0), dtype=np.intp)
        super().__init__(shape, fill_value=fill_value)
        if idx_dtype:
            if not can_store(idx_dtype, max(shape)):
                raise ValueError(f"cannot cast array with shape {shape} to dtype {idx_dtype}.")
            self.coords = self.coords.astype(idx_dtype)

        if self.shape:
            if len(self.data) != self.coords.shape[1]:
                msg = "The data length does not match the coordinates given.\nlen(data) = {}, but {} coords specified."
                raise ValueError(msg.format(len(data), self.coords.shape[1]))
            if len(self.shape) != self.coords.shape[0]:
                msg = (
                    "Shape specified by `shape` doesn't match the "
                    "shape of `coords`; len(shape)={} != coords.shape[0]={}"
                    "(and coords.shape={})"
                )
                raise ValueError(msg.format(len(shape), self.coords.shape[0], self.coords.shape))

        from .._settings import WARN_ON_TOO_DENSE

        if WARN_ON_TOO_DENSE and self.nbytes >= self.size * self.data.itemsize:
            warnings.warn(
                "Attempting to create a sparse array that takes no less "
                "memory than than an equivalent dense array. You may want to "
                "use a dense array here instead.",
                RuntimeWarning,
                stacklevel=1,
            )

        if not sorted:
            self._sort_indices()

        if has_duplicates:
            self._sum_duplicates()

        if prune:
            self._prune()

    def __getstate__(self):
        return (self.coords, self.data, self.shape, self.fill_value)

    def __setstate__(self, state):
        self.coords, self.data, self.shape, self.fill_value = state
        self._cache = None

    def __dask_tokenize__(self):
        "Produce a deterministic, content-based hash for dask."
        from dask.base import normalize_token

        return normalize_token((type(self), self.coords, self.data, self.shape, self.fill_value))

    def copy(self, deep=True):
        """Return a copy of the array.

        Parameters
        ----------
        deep : boolean, optional
            If True (default), the internal coords and data arrays are also
            copied. Set to ``False`` to only make a shallow copy.
        """
        return _copy.deepcopy(self) if deep else _copy.copy(self)

    def enable_caching(self):
        """Enable caching of reshape, transpose, and tocsr/csc operations

        This enables efficient iterative workflows that make heavy use of
        csr/csc operations, such as tensordot.  This maintains a cache of
        recent results of reshape and transpose so that operations like
        tensordot (which uses both internally) store efficiently stored
        representations for repeated use.  This can significantly cut down on
        computational costs in common numeric algorithms.

        However, this also assumes that neither this object, nor the downstream
        objects will have their data mutated.

        Examples
        --------
        >>> s.enable_caching()  # doctest: +SKIP
        >>> csr1 = s.transpose((2, 0, 1)).reshape((100, 120)).tocsr()  # doctest: +SKIP
        >>> csr2 = s.transpose((2, 0, 1)).reshape((100, 120)).tocsr()  # doctest: +SKIP
        >>> csr1 is csr2  # doctest: +SKIP
        True
        """
        self._cache = defaultdict(lambda: deque(maxlen=3))

    @classmethod
    def from_numpy(cls, x, fill_value=None, idx_dtype=None):
        """
        Convert the given [`sparse.COO`][] object.

        Parameters
        ----------
        x : np.ndarray
            The dense array to convert.
        fill_value : scalar
            The fill value of the constructed [`sparse.COO`][] array. Zero if
            unspecified.

        Returns
        -------
        COO
            The converted COO array.

        Examples
        --------
        >>> x = np.eye(5)
        >>> s = COO.from_numpy(x)
        >>> s
        <COO: shape=(5, 5), dtype=float64, nnz=5, fill_value=0.0>

        >>> x[x == 0] = np.nan
        >>> COO.from_numpy(x, fill_value=np.nan)
        <COO: shape=(5, 5), dtype=float64, nnz=5, fill_value=nan>
        """
        x = np.asanyarray(x).view(type=np.ndarray)

        if fill_value is None:
            fill_value = _zero_of_dtype(x.dtype) if x.shape else x

        coords = np.atleast_2d(np.flatnonzero(~equivalent(x, fill_value)))
        data = x.ravel()[tuple(coords)]
        return cls(
            coords,
            data,
            shape=x.size,
            has_duplicates=False,
            sorted=True,
            fill_value=fill_value,
            idx_dtype=idx_dtype,
        ).reshape(x.shape)

    def todense(self):
        """
        Convert this [`sparse.COO`][] array to a dense [`numpy.ndarray`][]. Note that
        this may take a large amount of memory if the `COO` object's `shape`
        is large.

        Returns
        -------
        numpy.ndarray
            The converted dense array.

        See Also
        --------
        - [`sparse.DOK.todense`][] : Equivalent `DOK` array method.
        - [`scipy.sparse.coo_matrix.todense`][] : Equivalent Scipy method.

        Examples
        --------
        >>> x = np.random.randint(100, size=(7, 3))
        >>> s = COO.from_numpy(x)
        >>> x2 = s.todense()
        >>> np.array_equal(x, x2)
        True
        """
        x = np.full(self.shape, self.fill_value, self.dtype)

        coords = tuple([self.coords[i, :] for i in range(self.ndim)])
        data = self.data

        if len(coords) != 0:
            x[coords] = data
        else:
            if len(data) != 0:
                assert data.shape == (1,)
                x[...] = data[0]

        return x

    @classmethod
    def from_scipy_sparse(cls, x, /, *, fill_value=None):
        """
        Construct a [`sparse.COO`][] array from a [`scipy.sparse.spmatrix`][]

        Parameters
        ----------
        x : scipy.sparse.spmatrix
            The sparse matrix to construct the array from.
        fill_value : scalar
            The fill-value to use when converting.

        Returns
        -------
        COO
            The converted [`sparse.COO`][] object.

        Examples
        --------
        >>> import scipy.sparse
        >>> x = scipy.sparse.rand(6, 3, density=0.2)
        >>> s = COO.from_scipy_sparse(x)
        >>> np.array_equal(x.todense(), s.todense())
        True
        """
        x = x.asformat("coo")
        if not x.has_canonical_format:
            x.eliminate_zeros()
            x.sum_duplicates()

        coords = np.empty((2, x.nnz), dtype=x.row.dtype)
        coords[0, :] = x.row
        coords[1, :] = x.col
        return COO(
            coords,
            x.data,
            shape=x.shape,
            has_duplicates=not x.has_canonical_format,
            sorted=x.has_canonical_format,
            fill_value=fill_value,
        )

    @classmethod
    def from_iter(cls, x, shape, fill_value=None, dtype=None):
        """
        Converts an iterable in certain formats to a [`sparse.COO`][] array. See examples
        for details.

        Parameters
        ----------
        x : Iterable or Iterator
            The iterable to convert to [`sparse.COO`][].
        shape : tuple[int]
            The shape of the array.
        fill_value : scalar
            The fill value for this array.
        dtype : numpy.dtype
            The dtype of the input array. Inferred from the input if not given.

        Returns
        -------
        out : COO
            The output [`sparse.COO`][] array.

        Examples
        --------
        You can convert items of the format [`sparse.COO`][].
        Here, the first part represents the coordinate and the second part represents the value.

        >>> x = [((0, 0), 1), ((1, 1), 1)]
        >>> s = COO.from_iter(x, shape=(2, 2))
        >>> s.todense()
        array([[1, 0],
               [0, 1]])

        You can also have a similar format with a dictionary.

        >>> x = {(0, 0): 1, (1, 1): 1}
        >>> s = COO.from_iter(x, shape=(2, 2))
        >>> s.todense()
        array([[1, 0],
               [0, 1]])

        The third supported format is ``(data, (..., row, col))``.

        >>> x = ([1, 1], ([0, 1], [0, 1]))
        >>> s = COO.from_iter(x, shape=(2, 2))
        >>> s.todense()
        array([[1, 0],
               [0, 1]])

        You can also pass in a [`collections.abc.Iterator`][] object.

        >>> x = [((0, 0), 1), ((1, 1), 1)].__iter__()
        >>> s = COO.from_iter(x, shape=(2, 2))
        >>> s.todense()
        array([[1, 0],
               [0, 1]])
        """
        if isinstance(x, dict):
            x = list(x.items())

        if not isinstance(x, Sized):
            x = list(x)

        if len(x) != 2 and not all(len(item) == 2 for item in x):
            raise ValueError("Invalid iterable to convert to COO.")

        if not x:
            ndim = 0 if shape is None else len(shape)
            coords = np.empty((ndim, 0), dtype=np.uint8)
            data = np.empty((0,), dtype=dtype)
            shape = () if shape is None else shape

        elif not isinstance(x[0][0], Iterable):
            coords = np.stack(x[1], axis=0)
            data = np.asarray(x[0], dtype=dtype)
        else:
            coords = np.array([item[0] for item in x]).T
            data = np.array([item[1] for item in x], dtype=dtype)

        if not (
            coords.ndim == 2 and data.ndim == 1 and np.issubdtype(coords.dtype, np.integer) and np.all(coords >= 0)
        ):
            raise ValueError("Invalid iterable to convert to COO.")

        return COO(coords, data, shape=shape, fill_value=fill_value)

    @property
    def dtype(self):
        """
        The datatype of this array.

        Returns
        -------
        numpy.dtype
            The datatype of this array.

        See Also
        --------
        - [`numpy.ndarray.dtype`][] : Numpy equivalent property.
        - [`scipy.sparse.coo_matrix.dtype`][] : Scipy equivalent property.

        Examples
        --------
        >>> x = (200 * np.random.rand(5, 4)).astype(np.int32)
        >>> s = COO.from_numpy(x)
        >>> s.dtype
        dtype('int32')
        >>> x.dtype == s.dtype
        True
        """
        return self.data.dtype

    @property
    def nnz(self):
        """
        The number of nonzero elements in this array. Note that any duplicates in
        `coords` are counted multiple times.

        Returns
        -------
        int
            The number of nonzero elements in this array.

        See Also
        --------
        - [`sparse.DOK.nnz`][] : Equivalent [`sparse.DOK`][] array property.
        - [`numpy.count_nonzero`][] : A similar Numpy function.
        - [`scipy.sparse.coo_matrix.nnz`][] : The Scipy equivalent property.

        Examples
        --------
        >>> x = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0])
        >>> np.count_nonzero(x)
        6
        >>> s = COO.from_numpy(x)
        >>> s.nnz
        6
        >>> np.count_nonzero(x) == s.nnz
        True
        """
        return self.coords.shape[1]

    @property
    def format(self):
        """
        The storage format of this array.
        Returns
        -------
        str
            The storage format of this array.
        See Also
        --------
        [`scipy.sparse.dok_matrix.format`][] : The Scipy equivalent property.
        Examples
        -------
        >>> import sparse
        >>> s = sparse.random((5, 5), density=0.2, format="dok")
        >>> s.format
        'dok'
        >>> t = sparse.random((5, 5), density=0.2, format="coo")
        >>> t.format
        'coo'
        """
        return "coo"

    @property
    def nbytes(self):
        """
        The number of bytes taken up by this object. Note that for small arrays,
        this may undercount the number of bytes due to the large constant overhead.

        Returns
        -------
        int
            The approximate bytes of memory taken by this object.

        See Also
        --------
        [`numpy.ndarray.nbytes`][] : The equivalent Numpy property.

        Examples
        --------
        >>> data = np.arange(6, dtype=np.uint8)
        >>> coords = np.random.randint(1000, size=(3, 6), dtype=np.uint16)
        >>> s = COO(coords, data, shape=(1000, 1000, 1000))
        >>> s.nbytes
        42
        """
        return self.data.nbytes + self.coords.nbytes

    def __len__(self):
        """
        Get "length" of array, which is by definition the size of the first
        dimension.

        Returns
        -------
        int
            The size of the first dimension.

        See Also
        --------
        numpy.ndarray.__len__ : Numpy equivalent property.

        Examples
        --------
        >>> x = np.zeros((10, 10))
        >>> s = COO.from_numpy(x)
        >>> len(s)
        10
        """
        return self.shape[0]

    def __sizeof__(self):
        return self.nbytes

    __getitem__ = getitem

    def __str__(self):
        summary = f"<COO: shape={self.shape!s}, dtype={self.dtype!s}, nnz={self.nnz:d}, fill_value={self.fill_value!s}>"
        return self._str_impl(summary)

    __repr__ = __str__

    def _reduce_calc(self, method, axis, keepdims=False, **kwargs):
        if axis == (None,):
            axis = tuple(range(self.ndim))
        axis = tuple(a if a >= 0 else a + self.ndim for a in axis)
        neg_axis = tuple(ax for ax in range(self.ndim) if ax not in set(axis))
        a = self.transpose(neg_axis + axis)
        a = a.reshape(
            (
                np.prod([self.shape[d] for d in neg_axis], dtype=np.intp),
                np.prod([self.shape[d] for d in axis], dtype=np.intp),
            )
        )
        data, inv_idx, counts = _grouped_reduce(a.data, a.coords[0], method, **kwargs)
        n_cols = a.shape[1]
        arr_attrs = (a, neg_axis, inv_idx)
        return (data, counts, axis, n_cols, arr_attrs)

    def _reduce_return(self, data, arr_attrs, result_fill_value):
        a, neg_axis, inv_idx = arr_attrs
        coords = a.coords[0:1, inv_idx]
        out = COO(
            coords,
            data,
            shape=(a.shape[0],),
            has_duplicates=False,
            sorted=True,
            prune=True,
            fill_value=result_fill_value,
        )

        return out.reshape(tuple(self.shape[d] for d in neg_axis))

    def transpose(self, axes=None):
        """
        Returns a new array which has the order of the axes switched.

        Parameters
        ----------
        axes : Iterable[int], optional
            The new order of the axes compared to the previous one. Reverses the axes
            by default.

        Returns
        -------
        COO
            The new array with the axes in the desired order.

        See Also
        --------
        - [`sparse.COO.T`][] : A quick property to reverse the order of the axes.
        - [`numpy.ndarray.transpose`][] : Numpy equivalent function.

        Examples
        --------
        We can change the order of the dimensions of any [`sparse.COO`][] array with this
        function.

        >>> x = np.add.outer(np.arange(5), np.arange(5)[::-1])
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 3, 2, 1, 0],
               [5, 4, 3, 2, 1],
               [6, 5, 4, 3, 2],
               [7, 6, 5, 4, 3],
               [8, 7, 6, 5, 4]])
        >>> s = COO.from_numpy(x)
        >>> s.transpose((1, 0)).todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 5, 6, 7, 8],
               [3, 4, 5, 6, 7],
               [2, 3, 4, 5, 6],
               [1, 2, 3, 4, 5],
               [0, 1, 2, 3, 4]])

        Note that by default, this reverses the order of the axes rather than switching
        the last and second-to-last axes as required by some linear algebra operations.

        >>> x = np.random.rand(2, 3, 4)
        >>> s = COO.from_numpy(x)
        >>> s.transpose().shape
        (4, 3, 2)
        """
        if axes is None:
            axes = list(reversed(range(self.ndim)))

        # Normalize all axes indices to positive values
        axes = normalize_axis(axes, self.ndim)

        if len(np.unique(axes)) < len(axes):
            raise ValueError("repeated axis in transpose")

        if not len(axes) == self.ndim:
            raise ValueError("axes don't match array")

        axes = tuple(axes)

        if axes == tuple(range(self.ndim)):
            return self

        if self._cache is not None:
            for ax, value in self._cache["transpose"]:
                if ax == axes:
                    return value

        shape = tuple(self.shape[ax] for ax in axes)
        result = COO(
            self.coords[axes, :],
            self.data,
            shape,
            has_duplicates=False,
            cache=self._cache is not None,
            fill_value=self.fill_value,
        )

        if self._cache is not None:
            self._cache["transpose"].append((axes, result))
        return result

    @property
    def T(self):
        """
        Returns a new array which has the order of the axes reversed.

        Returns
        -------
        COO
            The new array with the axes in the desired order.

        See Also
        --------
        - [`sparse.COO.transpose`][] :
            A method where you can specify the order of the axes.
        - [`numpy.ndarray.T`][] :
            Numpy equivalent property.

        Examples
        --------
        We can change the order of the dimensions of any [`sparse.COO`][] array with this
        function.

        >>> x = np.add.outer(np.arange(5), np.arange(5)[::-1])
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 3, 2, 1, 0],
               [5, 4, 3, 2, 1],
               [6, 5, 4, 3, 2],
               [7, 6, 5, 4, 3],
               [8, 7, 6, 5, 4]])
        >>> s = COO.from_numpy(x)
        >>> s.T.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[4, 5, 6, 7, 8],
               [3, 4, 5, 6, 7],
               [2, 3, 4, 5, 6],
               [1, 2, 3, 4, 5],
               [0, 1, 2, 3, 4]])

        Note that by default, this reverses the order of the axes rather than switching
        the last and second-to-last axes as required by some linear algebra operations.

        >>> x = np.random.rand(2, 3, 4)
        >>> s = COO.from_numpy(x)
        >>> s.T.shape
        (4, 3, 2)
        """
        return self.transpose(tuple(range(self.ndim))[::-1])

    @property
    def mT(self):
        """
        Transpose of a matrix (or a stack of matrices).
        If an array instance has fewer than two dimensions, an error should be raised.

        Returns
        -------
        COO
            array whose last two dimensions (axes) are permuted in reverse order relative to
            original array (i.e., for an array instance having shape (..., M, N), the returned
            array must have shape (..., N, M)). The returned array must have the same data
            type as the original array.

        See Also
        --------
        - [`sparse.COO.transpose`][] :
            A method where you can specify the order of the axes.
        - [`numpy.ndarray.mT`][] :
            Numpy equivalent property.

        Examples
        --------
        >>> x = np.arange(8).reshape((2, 2, 2))
        >>> x  # doctest: +NORMALIZE_WHITESPACE
        array([[[0, 1],
                [2, 3]],
               [[4, 5],
                [6, 7]]])
        >>> s = COO.from_numpy(x)
        >>> s.mT.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[[0, 2],
                [1, 3]],
               [[4, 6],
                [5, 7]]])
        """
        if self.ndim < 2:
            raise ValueError("Cannot compute matrix transpose if `ndim < 2`.")

        axis = list(range(self.ndim))
        axis[-1], axis[-2] = axis[-2], axis[-1]

        return self.transpose(axis)

    def swapaxes(self, axis1, axis2):
        """Returns array that has axes axis1 and axis2 swapped.

        Parameters
        ----------
        axis1 : int
            first axis to swap
        axis2 : int
            second axis to swap

        Returns
        -------
        COO
            The new array with the axes axis1 and axis2 swapped.

        Examples
        --------
        >>> x = COO.from_numpy(np.ones((2, 3, 4)))
        >>> x.swapaxes(0, 2)
        <COO: shape=(4, 3, 2), dtype=float64, nnz=24, fill_value=0.0>
        """
        # Normalize all axis1, axis2 to positive values
        axis1, axis2 = normalize_axis((axis1, axis2), self.ndim)  # checks if axis1,2 are in range + raises ValueError
        axes = list(range(self.ndim))
        axes[axis1], axes[axis2] = axes[axis2], axes[axis1]
        return self.transpose(axes)

    def dot(self, other):
        """
        Performs the equivalent of `x.dot(y)` for [`sparse.COO`][].

        Parameters
        ----------
        other : Union[COO, numpy.ndarray, scipy.sparse.spmatrix]
            The second operand of the dot product operation.

        Returns
        -------
        {COO, numpy.ndarray}
            The result of the dot product. If the result turns out to be dense,
            then a dense array is returned, otherwise, a sparse array.

        Raises
        ------
        ValueError
            If all arguments don't have zero fill-values.

        See Also
        --------
        - [`sparse.dot`][] : Equivalent function for two arguments.
        - [`numpy.dot`][] : Numpy equivalent function.
        - [`scipy.sparse.coo_matrix.dot`][] : Scipy equivalent function.

        Examples
        --------
        >>> x = np.arange(4).reshape((2, 2))
        >>> s = COO.from_numpy(x)
        >>> s.dot(s)  # doctest: +SKIP
        array([[ 2,  3],
               [ 6, 11]], dtype=int64)
        """
        from .._common import dot

        return dot(self, other)

    def __matmul__(self, other):
        from .._common import matmul

        try:
            return matmul(self, other)
        except NotImplementedError:
            return NotImplemented

    def __rmatmul__(self, other):
        from .._common import matmul

        try:
            return matmul(other, self)
        except NotImplementedError:
            return NotImplemented

    def linear_loc(self):
        """
        The nonzero coordinates of a flattened version of this array. Note that
        the coordinates may be out of order.

        Returns
        -------
        numpy.ndarray
            The flattened coordinates.

        See Also
        --------
        [`numpy.flatnonzero`][] : Equivalent Numpy function.

        Examples
        --------
        >>> x = np.eye(5)
        >>> s = COO.from_numpy(x)
        >>> s.linear_loc()  # doctest: +NORMALIZE_WHITESPACE
        array([ 0,  6, 12, 18, 24])
        >>> np.array_equal(np.flatnonzero(x), s.linear_loc())
        True
        """
        from .common import linear_loc

        return linear_loc(self.coords, self.shape)

    def flatten(self, order="C"):
        """
        Returns a new [`sparse.COO`][] array that is a flattened version of this array.

        Returns
        -------
        COO
            The flattened output array.

        Notes
        -----
        The `order` parameter is provided just for compatibility with
        Numpy and isn't actually supported.

        Examples
        --------
        >>> s = COO.from_numpy(np.arange(10))
        >>> s2 = s.reshape((2, 5)).flatten()
        >>> s2.todense()
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        """
        if order not in {"C", None}:
            raise NotImplementedError("The `order` parameter is notsupported.")

        return self.reshape(-1)

    def reshape(self, shape, order="C"):
        """
        Returns a new [`sparse.COO`][] array that is a reshaped version of this array.

        Parameters
        ----------
        shape : tuple[int]
            The desired shape of the output array.

        Returns
        -------
        COO
            The reshaped output array.

        See Also
        --------
        [`numpy.ndarray.reshape`][] : The equivalent Numpy function.

        Notes
        -----
        The `order` parameter is provided just for compatibility with
        Numpy and isn't actually supported.

        Examples
        --------
        >>> s = COO.from_numpy(np.arange(25))
        >>> s2 = s.reshape((5, 5))
        >>> s2.todense()  # doctest: +NORMALIZE_WHITESPACE
        array([[ 0,  1,  2,  3,  4],
               [ 5,  6,  7,  8,  9],
               [10, 11, 12, 13, 14],
               [15, 16, 17, 18, 19],
               [20, 21, 22, 23, 24]])
        """
        shape = tuple(shape) if isinstance(shape, Iterable) else (shape,)

        if order not in {"C", None}:
            raise NotImplementedError("The `order` parameter is not supported")

        if self.shape == shape:
            return self
        if any(d == -1 for d in shape):
            extra = int(self.size / np.prod([d for d in shape if d != -1]))
            shape = tuple([d if d != -1 else extra for d in shape])

        if self.size != reduce(operator.mul, shape, 1):
            raise ValueError(f"cannot reshape array of size {self.size} into shape {shape}")

        if self._cache is not None:
            for sh, value in self._cache["reshape"]:
                if sh == shape:
                    return value

        # TODO: this self.size enforces a 2**64 limit to array size
        linear_loc = self.linear_loc()

        idx_dtype = self.coords.dtype
        if shape != () and not can_store(idx_dtype, max(shape)):
            idx_dtype = np.min_scalar_type(max(shape))
        coords = np.empty((len(shape), self.nnz), dtype=idx_dtype)
        strides = 1
        for i, d in enumerate(shape[::-1]):
            coords[-(i + 1), :] = (linear_loc // strides) % d
            strides *= d

        result = COO(
            coords,
            self.data,
            shape,
            has_duplicates=False,
            sorted=True,
            cache=self._cache is not None,
            fill_value=self.fill_value,
        )

        if self._cache is not None:
            self._cache["reshape"].append((shape, result))
        return result

    def squeeze(self, axis=None):
        """
        Removes singleton dimensions (axes) from ``x``.
        Parameters
        ----------
        axis : Union[None, int, Tuple[int, ...]]
            The axis (or axes) to squeeze. If a specified axis has a size greater than one,
            a `ValueError` is raised. ``axis=None`` removes all singleton dimensions.
            Default: ``None``.
        Returns
        -------
        COO
            The output array without ``axis`` dimensions.
        Examples
        --------
        >>> s = COO.from_numpy(np.eye(2)).reshape((2, 1, 2, 1))
        >>> s.squeeze().shape
        (2, 2)
        >>> s.squeeze(axis=1).shape
        (2, 2, 1)
        """
        squeezable_dims = tuple([d for d in range(self.ndim) if self.shape[d] == 1])

        if axis is None:
            axis = squeezable_dims
        if isinstance(axis, int):
            axis = (axis,)
        elif isinstance(axis, Iterable):
            axis = tuple(axis)
        else:
            raise ValueError(f"Invalid axis parameter: `{axis}`.")

        for d in axis:
            if d not in squeezable_dims:
                raise ValueError(f"Specified axis `{d}` has a size greater than one: {self.shape[d]}")

        retained_dims = [d for d in range(self.ndim) if d not in axis]

        coords = self.coords[retained_dims, :]
        shape = tuple([s for idx, s in enumerate(self.shape) if idx in retained_dims])

        return COO(
            coords,
            self.data,
            shape,
            has_duplicates=False,
            sorted=True,
            cache=self._cache is not None,
            fill_value=self.fill_value,
        )

    def to_scipy_sparse(self, /, *, accept_fv=None):
        """
        Converts this [`sparse.COO`][] object into a [`scipy.sparse.coo_matrix`][].

        Parameters
        ----------
        accept_fv : scalar or list of scalar, optional
            The list of accepted fill-values. The default accepts only zero.

        Returns
        -------
        scipy.sparse.coo_matrix
            The converted Scipy sparse matrix.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.
        ValueError
            If all the array doesn't zero fill-values.

        See Also
        --------
        - [`sparse.COO.tocsr`][] : Convert to a [`scipy.sparse.csr_matrix`][].
        - [`sparse.COO.tocsc`][] : Convert to a [`scipy.sparse.csc_matrix`][].
        """
        import scipy.sparse

        check_fill_value(self, accept_fv=accept_fv)

        if self.ndim != 2:
            raise ValueError("Can only convert a 2-dimensional array to a Scipy sparse matrix.")

        result = scipy.sparse.coo_matrix((self.data, (self.coords[0], self.coords[1])), shape=self.shape)
        result.has_canonical_format = True
        return result

    def _tocsr(self):
        import scipy.sparse

        if self.ndim != 2:
            raise ValueError("This array must be two-dimensional for this conversion to work.")
        row, col = self.coords

        # Pass 3: count nonzeros in each row
        indptr = np.zeros(self.shape[0] + 1, dtype=np.int64)
        np.cumsum(np.bincount(row, minlength=self.shape[0]), out=indptr[1:])

        return scipy.sparse.csr_matrix((self.data, col, indptr), shape=self.shape)

    def tocsr(self):
        """
        Converts this array to a [`scipy.sparse.csr_matrix`][].

        Returns
        -------
        scipy.sparse.csr_matrix
            The result of the conversion.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.
        ValueError
            If all the array doesn't have zero fill-values.

        See Also
        --------
        - [`sparse.COO.tocsc`][] : Convert to a [`scipy.sparse.csc_matrix`][].
        - [`sparse.COO.to_scipy_sparse`][] : Convert to a [`scipy.sparse.coo_matrix`][].
        - [`scipy.sparse.coo_matrix.tocsr`][] : Equivalent Scipy function.
        """
        check_zero_fill_value(self)

        if self._cache is not None:
            try:
                return self._csr
            except AttributeError:
                pass
            try:
                self._csr = self._csc.tocsr()
                return self._csr
            except AttributeError:
                pass

            self._csr = csr = self._tocsr()
        else:
            csr = self._tocsr()
        return csr

    def tocsc(self):
        """
        Converts this array to a [`scipy.sparse.csc_matrix`][].

        Returns
        -------
        scipy.sparse.csc_matrix
            The result of the conversion.

        Raises
        ------
        ValueError
            If the array is not two-dimensional.
        ValueError
            If the array doesn't have zero fill-values.

        See Also
        --------
        - [`sparse.COO.tocsr`][] : Convert to a [`scipy.sparse.csr_matrix`][].
        - [`sparse.COO.to_scipy_sparse`][] : Convert to a [`scipy.sparse.coo_matrix`][].
        - [`scipy.sparse.coo_matrix.tocsc`][] : Equivalent Scipy function.
        """
        check_zero_fill_value(self)

        if self._cache is not None:
            try:
                return self._csc
            except AttributeError:
                pass
            try:
                self._csc = self._csr.tocsc()
                return self._csc
            except AttributeError:
                pass

            self._csc = csc = self.tocsr().tocsc()
        else:
            csc = self.tocsr().tocsc()

        return csc

    def _sort_indices(self):
        """
        Sorts the :obj:`COO.coords` attribute. Also sorts the data in
        :obj:`COO.data` to match.

        Examples
        --------
        >>> coords = np.array([[1, 2, 0]], dtype=np.uint8)
        >>> data = np.array([4, 1, 3], dtype=np.uint8)
        >>> s = COO(coords, data, shape=(3,))
        >>> s._sort_indices()
        >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2]], dtype=uint8)
        >>> s.data  # doctest: +NORMALIZE_WHITESPACE
        array([3, 4, 1], dtype=uint8)
        """
        linear = self.linear_loc()

        if (np.diff(linear) >= 0).all():  # already sorted
            return

        order = np.argsort(linear, kind="mergesort")
        self.coords = self.coords[:, order]
        self.data = self.data[order]

    def _sum_duplicates(self):
        """
        Sums data corresponding to duplicates in :obj:`COO.coords`.

        See Also
        --------
        scipy.sparse.coo_matrix.sum_duplicates : Equivalent Scipy function.

        Examples
        --------
        >>> coords = np.array([[0, 1, 1, 2]], dtype=np.uint8)
        >>> data = np.array([6, 5, 2, 2], dtype=np.uint8)
        >>> s = COO(coords, data, shape=(3,))
        >>> s._sum_duplicates()
        >>> s.coords  # doctest: +NORMALIZE_WHITESPACE
        array([[0, 1, 2]], dtype=uint8)
        >>> s.data  # doctest: +NORMALIZE_WHITESPACE
        array([6, 7, 2], dtype=uint8)
        """
        # Inspired by scipy/sparse/coo.py::sum_duplicates
        # See https://github.com/scipy/scipy/blob/main/LICENSE.txt
        linear = self.linear_loc()
        unique_mask = np.diff(linear) != 0

        if unique_mask.sum() == len(unique_mask):  # already unique
            return

        unique_mask = np.append(True, unique_mask)

        coords = self.coords[:, unique_mask]
        (unique_inds,) = np.nonzero(unique_mask)
        data = np.add.reduceat(self.data, unique_inds, dtype=self.data.dtype)

        self.data = data
        self.coords = coords

    def _prune(self):
        """
        Prunes data so that if any fill-values are present, they are removed
        from both coordinates and data.

        Examples
        --------
        >>> coords = np.array([[0, 1, 2, 3]])
        >>> data = np.array([1, 0, 1, 2])
        >>> s = COO(coords, data, shape=(4,))
        >>> s._prune()
        >>> s.nnz
        3
        """
        mask = ~equivalent(self.data, self.fill_value)
        self.coords = self.coords[:, mask]
        self.data = self.data[mask]

    def broadcast_to(self, shape):
        """
        Performs the equivalent of [`sparse.COO`][]. Note that
        this function returns a new array instead of a view.

        Parameters
        ----------
        shape : tuple[int]
            The shape to broadcast the data to.

        Returns
        -------
        COO
            The broadcasted sparse array.

        Raises
        ------
        ValueError
            If the operand cannot be broadcast to the given shape.

        See Also
        --------
        [`numpy.broadcast_to`][] : NumPy equivalent function
        """
        return broadcast_to(self, shape)

    def maybe_densify(self, max_size=1000, min_density=0.25):
        """
        Converts this [`sparse.COO`][] array to a [`numpy.ndarray`][] if not too
        costly.

        Parameters
        ----------
        max_size : int
            Maximum number of elements in output
        min_density : float
            Minimum density of output

        Returns
        -------
        numpy.ndarray
            The dense array.

        Raises
        ------
        ValueError
            If the returned array would be too large.

        Examples
        --------
        Convert a small sparse array to a dense array.

        >>> s = COO.from_numpy(np.random.rand(2, 3, 4))
        >>> x = s.maybe_densify()
        >>> np.allclose(x, s.todense())
        True

        You can also specify the minimum allowed density or the maximum number
        of output elements. If both conditions are unmet, this method will throw
        an error.

        >>> x = np.zeros((5, 5), dtype=np.uint8)
        >>> x[2, 2] = 1
        >>> s = COO.from_numpy(x)
        >>> s.maybe_densify(max_size=5, min_density=0.25)
        Traceback (most recent call last):
            ...
        ValueError: Operation would require converting large sparse array to dense
        """
        if self.size > max_size and self.density < min_density:
            raise ValueError("Operation would require converting large sparse array to dense")

        return self.todense()

    def nonzero(self):
        """
        Get the indices where this array is nonzero.

        Returns
        -------
        idx : tuple[`numpy.ndarray`]
            The indices where this array is nonzero.

        See Also
        --------
        [`numpy.ndarray.nonzero`][] : NumPy equivalent function

        Raises
        ------
        ValueError
            If the array doesn't have zero fill-values.

        Examples
        --------
        >>> s = COO.from_numpy(np.eye(5))
        >>> s.nonzero()
        (array([0, 1, 2, 3, 4]), array([0, 1, 2, 3, 4]))
        """
        check_zero_fill_value(self)
        if self.ndim == 0:
            raise ValueError("`nonzero` is undefined for `self.ndim == 0`.")
        return tuple(self.coords)

    def asformat(self, format, **kwargs):
        """
        Convert this sparse array to a given format.

        Parameters
        ----------
        format : str
            A format string.

        Returns
        -------
        out : SparseArray
            The converted array.

        Raises
        ------
        NotImplementedError
            If the format isn't supported.
        """
        from .._utils import convert_format

        format = convert_format(format)

        if format == "gcxs":
            from .._compressed import GCXS

            return GCXS.from_coo(self, **kwargs)

        if len(kwargs) != 0:
            raise TypeError(f"Invalid keyword arguments provided: {kwargs}")

        if format == "coo":
            return self

        if format == "dok":
            from .._dok import DOK

            return DOK.from_coo(self, **kwargs)

        return self.asformat("gcxs", **kwargs).asformat(format, **kwargs)

    def isinf(self):
        """
        Tests each element ``x_i`` of the array to determine if equal to positive or negative infinity.
        """
        new_fill_value = bool(np.isinf(self.fill_value))
        new_data = np.isinf(self.data)

        return COO(
            self.coords,
            new_data,
            shape=self.shape,
            fill_value=new_fill_value,
            prune=True,
        )

    def isnan(self):
        """
        Tests each element ``x_i`` of the array to determine whether the element is ``NaN``.
        """
        new_fill_value = bool(np.isnan(self.fill_value))
        new_data = np.isnan(self.data)

        return COO(
            self.coords,
            new_data,
            shape=self.shape,
            fill_value=new_fill_value,
            prune=True,
        )


def as_coo(x, shape=None, fill_value=None, idx_dtype=None):
    """
    Converts any given format to [`sparse.COO`][]. See the "See Also" section for details.

    Parameters
    ----------
    x : SparseArray or numpy.ndarray or scipy.sparse.spmatrix or Iterable.
        The item to convert.
    shape : tuple[int], optional
        The shape of the output array. Can only be used in case of Iterable.

    Returns
    -------
    out : COO
        The converted [`sparse.COO`][] array.

    See Also
    --------
    - [`sparse.SparseArray.asformat`][] :
        A utility function to convert between formats in this library.
    - [`sparse.COO.from_numpy`][] :
        Convert a Numpy array to [`sparse.COO`][].
    - [`sparse.COO.from_scipy_sparse`][] :
        Convert a SciPy sparse matrix to [`sparse.COO`][].
    - [`sparse.COO.from_iter`][] :
        Convert an iterable to [`sparse.COO`][].
    """
    from .._common import _is_scipy_sparse_obj

    if hasattr(x, "shape") and shape is not None:
        raise ValueError("Cannot provide a shape in combination with something that already has a shape.")

    if hasattr(x, "fill_value") and fill_value is not None:
        raise ValueError("Cannot provide a fill-value in combination with something that already has a fill-value.")

    if isinstance(x, SparseArray):
        return x.asformat("coo")

    if isinstance(x, np.ndarray) or np.isscalar(x):
        return COO.from_numpy(x, fill_value=fill_value, idx_dtype=idx_dtype)

    if _is_scipy_sparse_obj(x):
        return COO.from_scipy_sparse(x)

    if isinstance(x, Iterable | Iterator):
        return COO.from_iter(x, shape=shape, fill_value=fill_value)

    raise NotImplementedError(
        f"Format not supported for conversion. Supplied type is "
        f"{type(x)}, see help(sparse.as_coo) for supported formats."
    )


@numba.jit(nopython=True, nogil=True)  # pragma: no cover
def _calc_counts_invidx(groups):
    inv_idx = []
    counts = []

    if len(groups) == 0:
        return (
            np.array(inv_idx, dtype=groups.dtype),
            np.array(counts, dtype=groups.dtype),
        )

    inv_idx.append(0)

    last_group = groups[0]
    for i in range(1, len(groups)):
        if groups[i] != last_group:
            counts.append(i - inv_idx[-1])
            inv_idx.append(i)
            last_group = groups[i]

    counts.append(len(groups) - inv_idx[-1])

    return (np.array(inv_idx, dtype=groups.dtype), np.array(counts, dtype=groups.dtype))


def _grouped_reduce(x, groups, method, **kwargs):
    """
    Performs a :code:`ufunc` grouped reduce.

    Parameters
    ----------
    x : np.ndarray
        The data to reduce.
    groups : np.ndarray
        The groups the data belongs to. The groups must be
        contiguous.
    method : np.ufunc
        The :code:`ufunc` to use to perform the reduction.
    **kwargs : dict
        The kwargs to pass to the :code:`ufunc`'s :code:`reduceat`
        function.

    Returns
    -------
    result : np.ndarray
        The result of the grouped reduce operation.
    inv_idx : np.ndarray
        The index of the first element where each group is found.
    counts : np.ndarray
        The number of elements in each group.
    """
    # Partial credit to @shoyer
    # Ref: https://gist.github.com/shoyer/f538ac78ae904c936844
    inv_idx, counts = _calc_counts_invidx(groups)
    result = method.reduceat(x, inv_idx, **kwargs)
    return result, inv_idx, counts