1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
from collections.abc import Iterable
from numbers import Integral
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin
from ._slicing import normalize_index
from ._sparse_array import SparseArray
from ._utils import equivalent
class DOK(SparseArray, NDArrayOperatorsMixin):
"""
A class for building sparse multidimensional arrays.
Parameters
----------
shape : tuple[int] (DOK.ndim,)
The shape of the array.
data : dict, optional
The key-value pairs for the data in this array.
dtype : np.dtype, optional
The data type of this array. If left empty, it is inferred from
the first element.
fill_value : scalar, optional
The fill value of this array.
Attributes
----------
dtype : numpy.dtype
The datatype of this array. Can be `None` if no elements
have been set yet.
shape : tuple[int]
The shape of this array.
data : dict
The keys of this dictionary contain all the indices and the values
contain the nonzero entries.
See Also
--------
[`sparse.COO`][] : A read-only sparse array.
Examples
--------
You can create [`sparse.DOK`][] objects from Numpy arrays.
>>> x = np.eye(5, dtype=np.uint8)
>>> x[2, 3] = 5
>>> s = DOK.from_numpy(x)
>>> s
<DOK: shape=(5, 5), dtype=uint8, nnz=6, fill_value=0>
You can also create them from just shapes, and use slicing assignment.
>>> s2 = DOK((5, 5), dtype=np.int64)
>>> s2[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s2
<DOK: shape=(5, 5), dtype=int64, nnz=4, fill_value=0>
You can convert [`sparse.DOK`][] arrays to [`sparse.COO`][] arrays, or [`numpy.ndarray`][]
objects.
>>> from sparse import COO
>>> s3 = COO(s2)
>>> s3
<COO: shape=(5, 5), dtype=int64, nnz=4, fill_value=0>
>>> s2.todense() # doctest: +NORMALIZE_WHITESPACE
array([[0, 0, 0, 0, 0],
[0, 4, 5, 0, 0],
[0, 6, 7, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> s4 = COO.from_numpy(np.eye(4, dtype=np.uint8))
>>> s4
<COO: shape=(4, 4), dtype=uint8, nnz=4, fill_value=0>
>>> s5 = DOK.from_coo(s4)
>>> s5
<DOK: shape=(4, 4), dtype=uint8, nnz=4, fill_value=0>
You can also create [`sparse.DOK`][] arrays from a shape and a dict of
values. Zeros are automatically ignored.
>>> values = {
... (1, 2, 3): 4,
... (3, 2, 1): 0,
... }
>>> s6 = DOK((5, 5, 5), values)
>>> s6
<DOK: shape=(5, 5, 5), dtype=int64, nnz=1, fill_value=0.0>
"""
def __init__(self, shape, data=None, dtype=None, fill_value=None):
from ._common import _is_scipy_sparse_obj
from ._coo import COO
self.data = {}
if isinstance(shape, COO):
ar = DOK.from_coo(shape)
self._make_shallow_copy_of(ar)
return
if isinstance(shape, np.ndarray):
ar = DOK.from_numpy(shape)
self._make_shallow_copy_of(ar)
return
if _is_scipy_sparse_obj(shape):
ar = DOK.from_scipy_sparse(shape)
self._make_shallow_copy_of(ar)
return
self.dtype = np.dtype(dtype)
if not data:
data = {}
super().__init__(shape, fill_value=fill_value)
if isinstance(data, dict):
if not dtype:
if not len(data):
self.dtype = np.dtype("float64")
else:
self.dtype = np.result_type(*(np.asarray(x).dtype for x in data.values()))
for c, d in data.items():
self[c] = d
else:
raise ValueError("data must be a dict.")
@classmethod
def from_scipy_sparse(cls, x, /, *, fill_value=None):
"""
Create a [`sparse.DOK`][] array from a [`scipy.sparse.spmatrix`][].
Parameters
----------
x : scipy.sparse.spmatrix
The matrix to convert.
fill_value : scalar
The fill-value to use when converting.
Returns
-------
DOK
The equivalent [`sparse.DOK`][] array.
Examples
--------
>>> import scipy.sparse
>>> x = scipy.sparse.rand(6, 3, density=0.2)
>>> s = DOK.from_scipy_sparse(x)
>>> np.array_equal(x.todense(), s.todense())
True
"""
from sparse import COO
return COO.from_scipy_sparse(x, fill_value=fill_value).asformat(cls)
@classmethod
def from_coo(cls, x):
"""
Get a [`sparse.DOK`][] array from a [`sparse.COO`][] array.
Parameters
----------
x : COO
The array to convert.
Returns
-------
DOK
The equivalent [`sparse.DOK`][] array.
Examples
--------
>>> from sparse import COO
>>> s = COO.from_numpy(np.eye(4))
>>> s2 = DOK.from_coo(s)
>>> s2
<DOK: shape=(4, 4), dtype=float64, nnz=4, fill_value=0.0>
"""
ar = cls(x.shape, dtype=x.dtype, fill_value=x.fill_value)
for c, d in zip(x.coords.T, x.data, strict=True):
ar.data[tuple(c)] = d
return ar
def to_coo(self):
"""
Convert this [`sparse.DOK`][] array to a [`sparse.COO`][] array.
Returns
-------
COO
The equivalent [`sparse.COO`][] array.
Examples
--------
>>> s = DOK((5, 5))
>>> s[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s
<DOK: shape=(5, 5), dtype=float64, nnz=4, fill_value=0.0>
>>> s2 = s.to_coo()
>>> s2
<COO: shape=(5, 5), dtype=float64, nnz=4, fill_value=0.0>
"""
from ._coo import COO
return COO(self)
@classmethod
def from_numpy(cls, x):
"""
Get a [`sparse.DOK`][] array from a Numpy array.
Parameters
----------
x : np.ndarray
The array to convert.
Returns
-------
DOK
The equivalent [`sparse.DOK`][] array.
Examples
--------
>>> s = DOK.from_numpy(np.eye(4))
>>> s
<DOK: shape=(4, 4), dtype=float64, nnz=4, fill_value=0.0>
"""
ar = cls(x.shape, dtype=x.dtype)
coords = np.nonzero(x)
data = x[coords]
for c in zip(data, *coords, strict=True):
d, c = c[0], c[1:]
ar.data[c] = d
return ar
@property
def nnz(self):
"""
The number of nonzero elements in this array.
Returns
-------
int
The number of nonzero elements.
See Also
--------
- [`sparse.COO.nnz`][] : Equivalent [`sparse.COO`][] array property.
- [`numpy.count_nonzero`][] : A similar Numpy function.
- [`scipy.sparse.coo_matrix.nnz`][] : The Scipy equivalent property.
Examples
--------
>>> values = {
... (1, 2, 3): 4,
... (3, 2, 1): 0,
... }
>>> s = DOK((5, 5, 5), values)
>>> s.nnz
1
"""
return len(self.data)
@property
def format(self):
"""
The storage format of this array.
Returns
-------
str
The storage format of this array.
See Also
-------
[`scipy.sparse.dok_matrix.format`][] : The Scipy equivalent property.
Examples
-------
>>> import sparse
>>> s = sparse.random((5, 5), density=0.2, format="dok")
>>> s.format
'dok'
>>> t = sparse.random((5, 5), density=0.2, format="coo")
>>> t.format
'coo'
"""
return "dok"
@property
def nbytes(self):
"""
The number of bytes taken up by this object. Note that for small arrays,
this may undercount the number of bytes due to the large constant overhead.
Returns
-------
int
The approximate bytes of memory taken by this object.
See Also
--------
[`numpy.ndarray.nbytes`][] : The equivalent Numpy property.
Examples
--------
>>> import sparse
>>> x = sparse.random((100, 100), density=0.1, format="dok")
>>> x.nbytes
8000
"""
return self.nnz * self.dtype.itemsize
def __getitem__(self, key):
if not isinstance(key, tuple):
key = (key,)
if all(isinstance(k, Iterable) for k in key):
if len(key) != self.ndim:
raise NotImplementedError(f"Index sequences for all {self.ndim} array dimensions needed!")
if not all(len(key[0]) == len(k) for k in key):
raise IndexError("Unequal length of index sequences!")
return self._fancy_getitem(key)
key = normalize_index(key, self.shape)
ret = self.asformat("coo")[key]
if isinstance(ret, SparseArray):
ret = ret.asformat("dok")
return ret
def _fancy_getitem(self, key):
"""Subset of fancy indexing, when all dimensions are accessed"""
new_data = {}
for i, k in enumerate(zip(*key, strict=True)):
if k in self.data:
new_data[i] = self.data[k]
return DOK(
shape=(len(key[0])),
data=new_data,
dtype=self.dtype,
fill_value=self.fill_value,
)
def __setitem__(self, key, value):
value = np.asarray(value, dtype=self.dtype)
# 1D fancy indexing
if self.ndim == 1 and isinstance(key, Iterable) and all(isinstance(i, int | np.integer) for i in key):
key = (key,)
if isinstance(key, tuple) and all(isinstance(k, Iterable) for k in key):
if len(key) != self.ndim:
raise NotImplementedError(f"Index sequences for all {self.ndim} array dimensions needed!")
if not all(len(key[0]) == len(k) for k in key):
raise IndexError("Unequal length of index sequences!")
self._fancy_setitem(key, value)
return
key = normalize_index(key, self.shape)
key_list = [int(k) if isinstance(k, Integral) else k for k in key]
self._setitem(key_list, value)
def _fancy_setitem(self, idxs, values):
idxs = tuple(np.asanyarray(idxs) for idxs in idxs)
if not all(np.issubdtype(k.dtype, np.integer) for k in idxs):
raise IndexError("Indices must be sequences of integer types!")
if idxs[0].ndim != 1:
raise IndexError("Indices are not 1d sequences!")
if values.ndim == 0:
values = np.full(idxs[0].size, values, self.dtype)
elif values.ndim > 1:
raise ValueError(f"Dimension of values ({values.ndim}) must be 0 or 1!")
if not idxs[0].shape == values.shape:
raise ValueError(f"Shape mismatch of indices ({idxs[0].shape}) and values ({values.shape})!")
fill_value = self.fill_value
data = self.data
for idx, value in zip(zip(*idxs, strict=True), values, strict=True):
if value != fill_value:
data[idx] = value
elif idx in data:
del data[idx]
def _setitem(self, key_list, value):
value_missing_dims = len([ind for ind in key_list if isinstance(ind, slice)]) - value.ndim
if value_missing_dims < 0:
raise ValueError("setting an array element with a sequence.")
for i, ind in enumerate(key_list):
if isinstance(ind, slice):
step = ind.step if ind.step is not None else 1
if step > 0:
start = ind.start if ind.start is not None else 0
start = max(start, 0)
stop = ind.stop if ind.stop is not None else self.shape[i]
stop = min(stop, self.shape[i])
if start > stop:
start = stop
else:
start = ind.start or self.shape[i] - 1
stop = ind.stop if ind.stop is not None else -1
start = min(start, self.shape[i] - 1)
stop = max(stop, -1)
if start < stop:
start = stop
key_list_temp = key_list[:]
for v_idx, ki in enumerate(range(start, stop, step)):
key_list_temp[i] = ki
vi = value if value_missing_dims > 0 else (value[0] if value.shape[0] == 1 else value[v_idx])
self._setitem(key_list_temp, vi)
return
if not isinstance(ind, Integral):
raise IndexError("All indices must be slices or integers when setting an item.")
key = tuple(key_list)
if not equivalent(value, self.fill_value):
self.data[key] = value[()]
elif key in self.data:
del self.data[key]
def __str__(self):
summary = f"<DOK: shape={self.shape!s}, dtype={self.dtype!s}, nnz={self.nnz:d}, fill_value={self.fill_value!s}>"
return self._str_impl(summary)
__repr__ = __str__
def todense(self):
"""
Convert this [`sparse.DOK`][] array into a Numpy array.
Returns
-------
numpy.ndarray
The equivalent dense array.
See Also
--------
- [`sparse.COO.todense`][] : Equivalent `COO` array method.
- [`scipy.sparse.coo_matrix.todense`][] : Equivalent Scipy method.
Examples
--------
>>> s = DOK((5, 5))
>>> s[1:3, 1:3] = [[4, 5], [6, 7]]
>>> s.todense() # doctest: +SKIP
array([[0., 0., 0., 0., 0.],
[0., 4., 5., 0., 0.],
[0., 6., 7., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]])
"""
result = np.full(self.shape, self.fill_value, self.dtype)
for c, d in self.data.items():
result[c] = d
return result
def asformat(self, format, **kwargs):
"""
Convert this sparse array to a given format.
Parameters
----------
format : str
A format string.
Returns
-------
out : SparseArray
The converted array.
Raises
------
NotImplementedError
If the format isn't supported.
"""
from ._utils import convert_format
format = convert_format(format)
if format == "dok":
return self
if format == "coo":
from ._coo import COO
if len(kwargs) != 0:
raise ValueError(f"Extra kwargs found: {kwargs}")
return COO.from_iter(
self.data,
shape=self.shape,
fill_value=self.fill_value,
dtype=self.dtype,
)
return self.asformat("coo").asformat(format, **kwargs)
def reshape(self, shape, order="C"):
"""
Returns a new [`sparse.DOK`][] array that is a reshaped version of this array.
Parameters
----------
shape : tuple[int]
The desired shape of the output array.
Returns
-------
DOK
The reshaped output array.
See Also
--------
[`numpy.ndarray.reshape`][] : The equivalent Numpy function.
Notes
-----
The `order` parameter is provided just for compatibility with
Numpy and isn't actually supported.
Examples
--------
>>> s = DOK.from_numpy(np.arange(25))
>>> s2 = s.reshape((5, 5))
>>> s2.todense() # doctest: +NORMALIZE_WHITESPACE
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
"""
if order not in {"C", None}:
raise NotImplementedError("The 'order' parameter is not supported")
return DOK.from_coo(self.to_coo().reshape(shape))
def to_slice(k):
"""Convert integer indices to one-element slices for consistency"""
if isinstance(k, Integral):
return slice(k, k + 1, 1)
return k
|