1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
|
import contextlib
import operator
import warnings
from abc import ABCMeta, abstractmethod
from collections.abc import Callable, Iterable
from functools import reduce
from numbers import Integral
import numpy as np
from ._umath import elemwise
from ._utils import _zero_of_dtype, equivalent, html_table, normalize_axis
_reduce_super_ufunc = {np.add: np.multiply, np.multiply: np.power}
class SparseArray:
"""
An abstract base class for all the sparse array classes.
Attributes
----------
dtype : numpy.dtype
The data type of this array.
fill_value : scalar
The fill value of this array.
"""
__metaclass__ = ABCMeta
def __init__(self, shape, fill_value=None):
if not isinstance(shape, Iterable):
shape = (shape,)
if not all(isinstance(sh, Integral) and int(sh) >= 0 for sh in shape):
raise ValueError("shape must be an non-negative integer or a tuple of non-negative integers.")
self.shape = tuple(int(sh) for sh in shape)
if fill_value is not None:
if not hasattr(fill_value, "dtype") or fill_value.dtype != self.dtype:
self.fill_value = self.dtype.type(fill_value)
else:
self.fill_value = fill_value
else:
self.fill_value = _zero_of_dtype(self.dtype)
dtype = None
@property
def device(self):
data = getattr(self, "data", None)
return getattr(data, "device", "cpu")
def to_device(self, device, /, *, stream=None):
if device != "cpu":
raise ValueError("Only `device='cpu'` is supported.")
return self
@property
@abstractmethod
def nnz(self):
"""
The number of nonzero elements in this array. Note that any duplicates in
`coords` are counted multiple times.
Returns
-------
int
The number of nonzero elements in this array.
See Also
--------
- [`sparse.DOK.nnz`][] : Equivalent [`sparse.DOK`][] array property.
- [`numpy.count_nonzero`][] : A similar Numpy function.
- [`scipy.sparse.coo_matrix.nnz`][] : The Scipy equivalent property.
Examples
--------
>>> import numpy as np
>>> from sparse import COO
>>> x = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 0])
>>> np.count_nonzero(x)
6
>>> s = COO.from_numpy(x)
>>> s.nnz
6
>>> np.count_nonzero(x) == s.nnz
True
"""
@property
def ndim(self):
"""
The number of dimensions of this array.
Returns
-------
int
The number of dimensions of this array.
See Also
--------
- [`sparse.DOK.ndim`][] : Equivalent property for [`sparse.DOK`][] arrays.
- [`numpy.ndarray.ndim`][] : Numpy equivalent property.
Examples
--------
>>> from sparse import COO
>>> import numpy as np
>>> x = np.random.rand(1, 2, 3, 1, 2)
>>> s = COO.from_numpy(x)
>>> s.ndim
5
>>> s.ndim == x.ndim
True
"""
return len(self.shape)
@property
def size(self):
"""
The number of all elements (including zeros) in this array.
Returns
-------
int
The number of elements.
See Also
--------
[`numpy.ndarray.size`][] : Numpy equivalent property.
Examples
--------
>>> from sparse import COO
>>> import numpy as np
>>> x = np.zeros((10, 10))
>>> s = COO.from_numpy(x)
>>> s.size
100
"""
# We use this instead of np.prod because np.prod
# returns a float64 for an empty shape.
return reduce(operator.mul, self.shape, 1)
@property
def density(self):
"""
The ratio of nonzero to all elements in this array.
Returns
-------
float
The ratio of nonzero to all elements.
See Also
--------
- [`sparse.COO.size`][] : Number of elements.
- [`sparse.COO.nnz`][] : Number of nonzero elements.
Examples
--------
>>> import numpy as np
>>> from sparse import COO
>>> x = np.zeros((8, 8))
>>> x[0, :] = 1
>>> s = COO.from_numpy(x)
>>> s.density
0.125
"""
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=RuntimeWarning)
return float(np.float64(self.nnz) / np.float64(self.size))
def _repr_html_(self):
"""
Diagnostic report about this array.
Renders in Jupyter.
"""
try:
from matrepr import to_html
from matrepr.adapters.sparse_driver import PyDataSparseDriver
return to_html(PyDataSparseDriver.adapt(self), notebook=True)
except (ImportError, ValueError):
return html_table(self)
def _str_impl(self, summary):
"""
A human-readable representation of this array, including a metadata summary
and a tabular view of the array values.
Values view only included if `matrepr` is available.
Parameters
----------
summary
A type-specific summary of this array, used as the first line of return value.
Returns
-------
str
A human-readable representation of this array.
"""
try:
from matrepr import to_str
from matrepr.adapters.sparse_driver import PyDataSparseDriver
values = to_str(
PyDataSparseDriver.adapt(self),
title=False, # disable matrepr description
width_str=0, # autodetect terminal width
max_cols=9999,
)
return f"{summary}\n{values}"
except (ImportError, ValueError):
return summary
@abstractmethod
def asformat(self, format):
"""
Convert this sparse array to a given format.
Parameters
----------
format : str
A format string.
Returns
-------
out : SparseArray
The converted array.
Raises
------
NotImplementedError
If the format isn't supported.
"""
@abstractmethod
def todense(self):
"""
Convert this [`sparse.SparseArray`][] array to a dense [`numpy.ndarray`][]. Note that
this may take a large amount of memory and time.
Returns
-------
numpy.ndarray
The converted dense array.
See Also
--------
- [`sparse.DOK.todense`][] : Equivalent `DOK` array method.
- [`sparse.COO.todense`][] : Equivalent `COO` array method.
- [`scipy.sparse.coo_matrix.todense`][] : Equivalent Scipy method.
Examples
--------
>>> import sparse
>>> x = np.random.randint(100, size=(7, 3))
>>> s = sparse.COO.from_numpy(x)
>>> x2 = s.todense()
>>> np.array_equal(x, x2)
True
"""
def _make_shallow_copy_of(self, other):
self.__dict__ = other.__dict__.copy()
def __array__(self, *args, **kwargs):
from ._settings import AUTO_DENSIFY
if not AUTO_DENSIFY:
raise RuntimeError(
"Cannot convert a sparse array to dense automatically. To manually densify, use the todense method."
)
return np.asarray(self.todense(), *args, **kwargs)
def __array_function__(self, func, types, args, kwargs):
import sparse as module
sparse_func = None
try:
submodules = getattr(func, "__module__", "numpy").split(".")[1:]
for submodule in submodules:
module = getattr(module, submodule)
sparse_func = getattr(module, func.__name__)
except AttributeError:
pass
else:
return sparse_func(*args, **kwargs)
with contextlib.suppress(AttributeError):
sparse_func = getattr(type(self), func.__name__)
if not isinstance(sparse_func, Callable) and len(args) == 1 and len(kwargs) == 0:
try:
return getattr(self, func.__name__)
except AttributeError:
pass
if sparse_func is None:
return NotImplemented
return sparse_func(*args, **kwargs)
@staticmethod
def _reduce(method, *args, **kwargs):
from ._common import _is_scipy_sparse_obj
assert len(args) == 1
self = args[0]
if _is_scipy_sparse_obj(self):
self = type(self).from_scipy_sparse(self)
return self.reduce(method, **kwargs)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.pop("out", None)
if out is not None and not all(isinstance(x, type(self)) for x in out):
return NotImplemented
if getattr(ufunc, "signature", None) is not None:
return self.__array_function__(ufunc, (np.ndarray, type(self)), inputs, kwargs)
if out is not None:
test_args = [np.empty((1,), dtype=a.dtype) if hasattr(a, "dtype") else a for a in inputs]
test_kwargs = kwargs.copy()
if method == "reduce":
test_kwargs["axis"] = None
test_out = tuple(np.empty((1,), dtype=a.dtype) for a in out)
if len(test_out) == 1:
test_out = test_out[0]
getattr(ufunc, method)(*test_args, out=test_out, **test_kwargs)
kwargs["dtype"] = out[0].dtype
if method == "outer":
method = "__call__"
cum_ndim = 0
inputs_transformed = []
for inp in reversed(inputs):
inputs_transformed.append(inp[(Ellipsis,) + (None,) * cum_ndim])
cum_ndim += inp.ndim
inputs = tuple(reversed(inputs_transformed))
if method == "__call__":
result = elemwise(ufunc, *inputs, **kwargs)
elif method == "reduce":
result = SparseArray._reduce(ufunc, *inputs, **kwargs)
else:
return NotImplemented
if out is not None:
(out,) = out
if out.shape != result.shape:
raise ValueError(
f"non-broadcastable output operand with shape {out.shape} "
f"doesn't match the broadcast shape {result.shape}"
)
out._make_shallow_copy_of(result)
return out
return result
def reduce(self, method, axis=(0,), keepdims=False, **kwargs):
"""
Performs a reduction operation on this array.
Parameters
----------
method : numpy.ufunc
The method to use for performing the reduction.
axis : Union[int, Iterable[int]], optional
The axes along which to perform the reduction. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
**kwargs : dict
Any extra arguments to pass to the reduction operation.
See Also
--------
- [`numpy.ufunc.reduce`][] : A similar Numpy method.
- [`sparse.COO.reduce`][] : This method implemented on COO arrays.
- [`sparse.GCXS.reduce`][] : This method implemented on GCXS arrays.
"""
axis = normalize_axis(axis, self.ndim)
zero_reduce_result = method.reduce([self.fill_value, self.fill_value], **kwargs)
reduce_super_ufunc = _reduce_super_ufunc.get(method)
if not equivalent(zero_reduce_result, self.fill_value) and reduce_super_ufunc is None:
raise ValueError(f"Performing this reduction operation would produce a dense result: {method!s}")
if not isinstance(axis, tuple):
axis = (axis,)
out = self._reduce_calc(method, axis, keepdims, **kwargs)
if len(out) == 1:
return out[0]
data, counts, axis, n_cols, arr_attrs = out
result_fill_value = self.fill_value
if reduce_super_ufunc is None:
missing_counts = counts != n_cols
data[missing_counts] = method(data[missing_counts], self.fill_value, **kwargs)
else:
data = method(
data,
reduce_super_ufunc(self.fill_value, n_cols - counts),
).astype(data.dtype)
result_fill_value = reduce_super_ufunc(self.fill_value, n_cols)
out = self._reduce_return(data, arr_attrs, result_fill_value)
if keepdims:
shape = list(self.shape)
for ax in axis:
shape[ax] = 1
out = out.reshape(shape)
if out.ndim == 0:
return out[()]
return out
def _reduce_calc(self, method, axis, keepdims, **kwargs):
raise NotImplementedError
def _reduce_return(self, data, arr_attrs, result_fill_value):
raise NotImplementedError
def sum(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Performs a sum operation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to sum. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
- [`numpy.sum`][] : Equivalent numpy function.
- [`scipy.sparse.coo_matrix.sum`][] : Equivalent Scipy function.
"""
return np.add.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)
def max(self, axis=None, keepdims=False, out=None):
"""
Maximize along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to maximize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
out : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
- [`numpy.max`][] : Equivalent numpy function.
- [`scipy.sparse.coo_matrix.max`][] : Equivalent Scipy function.
"""
return np.maximum.reduce(self, out=out, axis=axis, keepdims=keepdims)
amax = max
def any(self, axis=None, keepdims=False, out=None):
"""
See if any values along array are ``True``. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
[`numpy.any`][] : Equivalent numpy function.
"""
return np.logical_or.reduce(self, out=out, axis=axis, keepdims=keepdims)
def all(self, axis=None, keepdims=False, out=None):
"""
See if all values in an array are ``True``. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
[`numpy.all`][] : Equivalent numpy function.
"""
return np.logical_and.reduce(self, out=out, axis=axis, keepdims=keepdims)
def min(self, axis=None, keepdims=False, out=None):
"""
Minimize along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to minimize. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
out : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
- [`numpy.min`][] : Equivalent numpy function.
- [`scipy.sparse.coo_matrix.min`][] : Equivalent Scipy function.
"""
return np.minimum.reduce(self, out=out, axis=axis, keepdims=keepdims)
amin = min
def prod(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Performs a product operation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to multiply. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
[`numpy.prod`][] : Equivalent numpy function.
"""
return np.multiply.reduce(self, out=out, axis=axis, keepdims=keepdims, dtype=dtype)
def round(self, decimals=0, out=None):
"""
Evenly round to the given number of decimals.
See Also
--------
- [`numpy.round`][] :
NumPy equivalent ufunc.
- [`sparse.elemwise`][] :
Apply an arbitrary element-wise function to one or two
arguments.
"""
if out is not None and not isinstance(out, tuple):
out = (out,)
return self.__array_ufunc__(np.round, "__call__", self, decimals=decimals, out=out)
round_ = round
def clip(self, min=None, max=None, out=None):
"""
Clip (limit) the values in the array.
Return an array whose values are limited to ``[min, max]``. One of min
or max must be given.
See Also
--------
- [sparse.clip][] : For full documentation and more details.
- [`numpy.clip`][] : Equivalent NumPy function.
"""
if out is not None and not isinstance(out, tuple):
out = (out,)
return self.__array_ufunc__(np.clip, "__call__", self, a_min=min, a_max=max, out=out)
def astype(self, dtype, casting="unsafe", copy=True):
"""
Copy of the array, cast to a specified type.
See Also
--------
- [`scipy.sparse.coo_matrix.astype`][] :
SciPy sparse equivalent function
- [`numpy.ndarray.astype`][] :
NumPy equivalent ufunc.
- [`sparse.elemwise`][] :
Apply an arbitrary element-wise function to one or two
arguments.
"""
# this matches numpy's behavior
if self.dtype == dtype and not copy:
return self
return self.__array_ufunc__(np.ndarray.astype, "__call__", self, dtype=dtype, copy=copy, casting=casting)
def mean(self, axis=None, keepdims=False, dtype=None, out=None):
"""
Compute the mean along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the mean. Uses all axes by default.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
dtype : numpy.dtype
The data type of the output array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
- [`numpy.ndarray.mean`][] : Equivalent numpy method.
- [`scipy.sparse.coo_matrix.mean`][] : Equivalent Scipy method.
Notes
-----
* The `out` parameter is provided just for compatibility with
Numpy and isn't actually supported.
Examples
--------
You can use [`sparse.COO.mean`][] to compute the mean of an array across any
dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.mean(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.5, 1.5, 0., 0.])
You can also use the `keepdims` argument to keep the dimensions
after the mean.
>>> s3 = s.mean(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.mean(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
mean along all axes.
>>> s.mean()
np.float64(0.5)
"""
if axis is None:
axis = tuple(range(self.ndim))
elif not isinstance(axis, tuple):
axis = (axis,)
den = reduce(operator.mul, (self.shape[i] for i in axis), 1)
if dtype is None:
if issubclass(self.dtype.type, np.integer | np.bool_):
dtype = inter_dtype = np.dtype("f8")
else:
dtype = self.dtype
inter_dtype = np.dtype("f4") if issubclass(dtype.type, np.float16) else dtype
else:
inter_dtype = dtype
num = self.sum(axis=axis, keepdims=keepdims, dtype=inter_dtype)
if num.ndim:
out = np.true_divide(num, den, casting="unsafe")
return out.astype(dtype) if out.dtype != dtype else out
return np.divide(num, den, dtype=dtype, out=out)
def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
"""
Compute the variance along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the variance. Uses all axes by default.
dtype : numpy.dtype, optional
The output datatype.
out : SparseArray, optional
The array to write the output to.
ddof : int
The degrees of freedom.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
[`numpy.ndarray.var`][] : Equivalent numpy method.
Examples
--------
You can use [`sparse.COO.var`][] to compute the variance of an array across any
dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.var(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.6875, 0.1875])
You can also use the `keepdims` argument to keep the dimensions
after the variance.
>>> s3 = s.var(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.var(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
variance along all axes.
>>> s.var()
np.float64(0.5)
"""
axis = normalize_axis(axis, self.ndim)
if axis is None:
axis = tuple(range(self.ndim))
if not isinstance(axis, tuple):
axis = (axis,)
rcount = reduce(operator.mul, (self.shape[a] for a in axis), 1)
# Make this warning show up on top.
if ddof >= rcount:
warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=1)
# Cast bool, unsigned int, and int to float64 by default
if dtype is None and issubclass(self.dtype.type, np.integer | np.bool_):
dtype = np.dtype("f8")
arrmean = self.sum(axis, dtype=dtype, keepdims=True)[...]
np.divide(arrmean, rcount, out=arrmean)
x = self - arrmean
if issubclass(self.dtype.type, np.complexfloating):
x = x.real * x.real + x.imag * x.imag
else:
x = np.multiply(x, x, out=x)
ret = x.sum(axis=axis, dtype=dtype, out=out, keepdims=keepdims)
# Compute degrees of freedom and make sure it is not negative.
rcount = max([rcount - ddof, 0])
ret = ret[...]
np.divide(ret, rcount, out=ret, casting="unsafe")
return ret[()]
def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False):
"""
Compute the standard deviation along the given axes. Uses all axes by default.
Parameters
----------
axis : Union[int, Iterable[int]], optional
The axes along which to compute the standard deviation. Uses
all axes by default.
dtype : numpy.dtype, optional
The output datatype.
out : SparseArray, optional
The array to write the output to.
ddof : int
The degrees of freedom.
keepdims : bool, optional
Whether or not to keep the dimensions of the original array.
Returns
-------
SparseArray
The reduced output sparse array.
See Also
--------
[`numpy.ndarray.std`][] : Equivalent numpy method.
Examples
--------
You can use [`sparse.COO.std`][] to compute the standard deviation of an array
across any dimension.
>>> from sparse import COO
>>> x = np.array([[1, 2, 0, 0], [0, 1, 0, 0]], dtype="i8")
>>> s = COO.from_numpy(x)
>>> s2 = s.std(axis=1)
>>> s2.todense() # doctest: +SKIP
array([0.8291562, 0.4330127])
You can also use the `keepdims` argument to keep the dimensions
after the standard deviation.
>>> s3 = s.std(axis=0, keepdims=True)
>>> s3.shape
(1, 4)
You can pass in an output datatype, if needed.
>>> s4 = s.std(axis=0, dtype=np.float16)
>>> s4.dtype
dtype('float16')
By default, this reduces the array down to one number, computing the
standard deviation along all axes.
>>> s.std() # doctest: +SKIP
0.7071067811865476
"""
ret = self.var(axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims)
return np.sqrt(ret)
@property
def real(self):
"""The real part of the array.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.real.todense() # doctest: +SKIP
array([1., 0.])
>>> x.real.dtype
dtype('float64')
Returns
-------
out : SparseArray
The real component of the array elements. If the array dtype is
real, the dtype of the array is used for the output. If the array
is complex, the output dtype is float.
See Also
--------
- [`numpy.ndarray.real`][] : NumPy equivalent attribute.
- [`numpy.real`][] : NumPy equivalent function.
"""
return self.__array_ufunc__(np.real, "__call__", self)
@property
def imag(self):
"""The imaginary part of the array.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 0j, 0 + 1j])
>>> x.imag.todense() # doctest: +SKIP
array([0., 1.])
>>> x.imag.dtype
dtype('float64')
Returns
-------
out : SparseArray
The imaginary component of the array elements. If the array dtype
is real, the dtype of the array is used for the output. If the
array is complex, the output dtype is float.
See Also
--------
- [`numpy.ndarray.imag`][] : NumPy equivalent attribute.
- [`numpy.imag`][] : NumPy equivalent function.
"""
return self.__array_ufunc__(np.imag, "__call__", self)
def conj(self):
"""Return the complex conjugate, element-wise.
The complex conjugate of a complex number is obtained by changing the
sign of its imaginary part.
Examples
--------
>>> from sparse import COO
>>> x = COO.from_numpy([1 + 2j, 2 - 1j])
>>> res = x.conj()
>>> res.todense() # doctest: +SKIP
array([1.-2.j, 2.+1.j])
>>> res.dtype
dtype('complex128')
Returns
-------
out : SparseArray
The complex conjugate, with same dtype as the input.
See Also
--------
- [`numpy.ndarray.conj`][] : NumPy equivalent method.
- [`numpy.conj`][] : NumPy equivalent function.
"""
return np.conj(self)
def __array_namespace__(self, *, api_version=None):
if api_version is None:
api_version = "2024.12"
if api_version not in {"2021.12", "2022.12", "2023.12", "2024.12"}:
raise ValueError(f'"{api_version}" Array API version not supported.')
import sparse
return sparse
def __bool__(self):
""" """
return self._to_scalar(bool)
def __float__(self):
""" """
return self._to_scalar(float)
def __int__(self):
""" """
return self._to_scalar(int)
def __index__(self):
""" """
return self._to_scalar(int)
def __complex__(self):
""" """
return self._to_scalar(complex)
def _to_scalar(self, builtin):
if self.size != 1 or self.shape != ():
raise ValueError(f"{builtin} can be computed for one-element arrays only.")
return builtin(self.todense().flatten()[0])
@abstractmethod
def isinf(self):
""" """
@abstractmethod
def isnan(self):
""" """
|