File: detectors.py

package info (click to toggle)
python-spectral 0.22.4-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,064 kB
  • sloc: python: 13,161; makefile: 7
file content (677 lines) | stat: -rw-r--r-- 26,453 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
'''
Spectral target detection algorithms.
'''

from __future__ import absolute_import, division, print_function, unicode_literals

__all__ = ['MatchedFilter', 'matched_filter', 'RX', 'rx', 'ace']

import math
import numpy as np

from .algorithms import calc_stats
from .transforms import LinearTransform
from .spatial import map_outer_window_stats
from .spymath import matrix_sqrt


class MatchedFilter(LinearTransform):
    r'''A callable linear matched filter.

    Given target/background means and a common covariance matrix, the matched
    filter response is given by:

    .. math::

        y=\frac{(\mu_t-\mu_b)^T\Sigma^{-1}(x-\mu_b)}{(\mu_t-\mu_b)^T\Sigma^{-1}(\mu_t-\mu_b)}

    where :math:`\mu_t` is the target mean, :math:`\mu_b` is the background
    mean, and :math:`\Sigma` is the covariance.
    '''

    def __init__(self, background, target):
        '''Creates the filter, given background/target means and covariance.

        Arguments:

            `background` (`GaussianStats`):

                The Gaussian statistics for the background (e.g., the result
                of calling :func:`calc_stats`).

            `target` (ndarray):

                Length-K target mean
        '''
        self.background = background
        self.u_b = background.mean
        self.u_t = target
        self._whitening_transform = None

        d_tb = (target - self.u_b)
        self.d_tb = d_tb
        C_1 = background.inv_cov
        self.C_1 = C_1

        # Normalization coefficient (inverse of  squared Mahalanobis distance
        # between u_t and u_b)
        self.coef = 1.0 / d_tb.dot(C_1).dot(d_tb)

        LinearTransform.__init__(
            self, (self.coef * d_tb).dot(C_1), pre=-self.u_b)

    def whiten(self, X):
        '''Transforms data to the whitened space of the background.

        Arguments:

            `X` (ndarray):

                Size (M,N,K) or (M*N,K) array of length K vectors to transform.

        Returns an array of same size as `X` but linearly transformed to the
        whitened space of the filter.
        '''
        if self._whitening_transform is None:
            A = math.sqrt(self.coef) * self.background.sqrt_inv_cov
            self._whitening_transform = LinearTransform(A, pre=-self.u_b)
        return self._whitening_transform(X)

def matched_filter(X, target, background=None, window=None, cov=None):
    r'''Computes a linear matched filter target detector score.

    Usage:

        y = matched_filter(X, target, background)

        y = matched_filter(X, target, window=<win> [, cov=<cov>])
        
    Given target/background means and a common covariance matrix, the matched
    filter response is given by:

    .. math::

        y=\frac{(\mu_t-\mu_b)^T\Sigma^{-1}(x-\mu_b)}{(\mu_t-\mu_b)^T\Sigma^{-1}(\mu_t-\mu_b)}

    where :math:`\mu_t` is the target mean, :math:`\mu_b` is the background
    mean, and :math:`\Sigma` is the covariance.

    Arguments:

        `X` (numpy.ndarray):

            For the first calling method shown, `X` can be an image with
            shape (R, C, B) or an ndarray of shape (R * C, B). If the
            `background` keyword is given, it will be used for the image
            background statistics; otherwise, background statistics will be
            computed from `X`.

            If the `window` keyword is given, `X` must be a 3-dimensional
            array and background statistics will be computed for each point
            in the image using a local window defined by the keyword.

        `target` (ndarray):

            Length-K vector specifying the target to be detected.

        `background` (`GaussianStats`):

            The Gaussian statistics for the background (e.g., the result
            of calling :func:`calc_stats` for an image). This argument is not
            required if `window` is given.

        `window` (2-tuple of odd integers):

            Must have the form (`inner`, `outer`), where the two values
            specify the widths (in pixels) of inner and outer windows centered
            about the pixel being evaulated. Both values must be odd integers.
            The background mean and covariance will be estimated from pixels
            in the outer window, excluding pixels within the inner window. For
            example, if (`inner`, `outer`) = (5, 21), then the number of
            pixels used to estimate background statistics will be
            :math:`21^2 - 5^2 = 416`. If this argument is given, `background`
            is not required (and will be ignored, if given).

            The window is modified near image borders, where full, centered
            windows cannot be created. The outer window will be shifted, as
            needed, to ensure that the outer window still has height and width
            `outer` (in this situation, the pixel being evaluated will not be
            at the center of the outer window). The inner window will be
            clipped, as needed, near image borders. For example, assume an
            image with 145 rows and columns. If the window used is
            (5, 21), then for the image pixel at (0, 0) (upper left corner),
            the the inner window will cover `image[:3, :3]` and the outer
            window will cover `image[:21, :21]`. For the pixel at (50, 1), the
            inner window will cover `image[48:53, :4]` and the outer window
            will cover `image[40:51, :21]`.
            
        `cov` (ndarray):

            An optional covariance to use. If this parameter is given, `cov`
            will be used for all matched filter calculations (background
            covariance will not be recomputed in each window) and only the
            background mean will be recomputed in each window. If the
            `window` argument is specified, providing `cov` will allow the
            result to be computed *much* faster.

    Returns numpy.ndarray:

        The return value will be the matched filter scores distance) for each
        pixel given.  If `X` has shape (R, C, K), the returned ndarray will
        have shape (R, C).
    '''
    if background is not None and window is not None:
        raise ValueError('`background` and `window` are mutually ' \
                         'exclusive arguments.')
    if window is not None:
        def mf_wrapper(bg, x):
            return MatchedFilter(bg, target)(x)
        return map_outer_window_stats(mf_wrapper, X, window[0], window[1],
                                      dim_out=1, cov=cov)
    else:
        if background is None:
            background = calc_stats(X)
        return MatchedFilter(background, target)(X)


class RX():
    r'''An implementation of the RX anomaly detector. Given the mean and
    covariance of the background, this detector returns the squared Mahalanobis
    distance of a spectrum according to

    .. math::

        y=(x-\mu_b)^T\Sigma^{-1}(x-\mu_b)

    where `x` is the unknown pixel spectrum, :math:`\mu_b` is the background
    mean, and :math:`\Sigma` is the background covariance.

    References:

    Reed, I.S. and Yu, X., "Adaptive multiple-band CFAR detection of an optical
    pattern with unknown spectral distribution," IEEE Trans. Acoust.,
    Speech, Signal Processing, vol. 38, pp. 1760-1770, Oct. 1990.
    '''
    dim_out=1

    def __init__(self, background=None):
        '''Creates the detector, given optional background/target stats.

        Arguments:

            `background` (`GaussianStats`, default None):

            The Gaussian statistics for the background (e.g., the result
            of calling :func:`calc_stats`). If no background stats are
            provided, they will be estimated based on data passed to the
            detector.
        '''
        if background is not None:
            self.set_background(background)
        else:
            self.background = None

    def set_background(self, stats):
        '''Sets background statistics to be used when applying the detector.'''
        self.background = stats

    def __call__(self, X):
        '''Applies the RX anomaly detector to X.

        Arguments:

            `X` (numpy.ndarray):

                For an image with shape (R, C, B), `X` can be a vector of
                length B (single pixel) or an ndarray of shape (R, C, B) or
                (R * C, B).

        Returns numpy.ndarray or float:

            The return value will be the RX detector score (squared Mahalanobis
            distance) for each pixel given.  If `X` is a single pixel, a float
            will be returned; otherwise, the return value will be an ndarray
            of floats with one less dimension than the input.
        '''
        if not isinstance(X, np.ndarray):
            raise TypeError('Expected a numpy.ndarray.')

        if self.background is None:
            self.set_background(calc_stats(X))

        X = (X - self.background.mean)
        C_1 = self.background.inv_cov

        ndim = X.ndim
        shape = X.shape

        if ndim == 1:
            return X.dot(C_1).dot(X)

        if ndim == 3:
            X = X.reshape((-1, X.shape[-1]))

        A = X.dot(C_1)
        r = np.einsum('ij,ij->i', A, X)
        return r.reshape(shape[:-1])

        # I tried using einsum for the above calculations but, surprisingly,
        # it was *much* slower than using dot & sum. Need to figure out if
        # that is due to multithreading or some other reason.

#        print 'ndim =', ndim
#        if ndim == 1:
#            return np.einsum('i,ij,j', X, self.background.inv_cov, X)
#        if ndim == 3:
#            return np.einsum('ijk,km,ijm->ij',
#                             X, self.background.inv_cov, X).squeeze()
#        elif ndim == 2:
#            return np.einsum('ik,km,im->i',
#                             X, self.background.inv_cov, X).squeeze()
#        else:
#            raise Exception('Unexpected number of dimensions.')
#

def rx(X, background=None, window=None, cov=None):
    r'''Computes RX anomaly detector scores.

    Usage:

        y = rx(X [, background=bg])

        y = rx(X, window=(inner, outer) [, cov=C])

    The RX anomaly detector produces a detection statistic equal to the 
    squared Mahalanobis distance of a spectrum from a background distribution
    according to

    .. math::

        y=(x-\mu_b)^T\Sigma^{-1}(x-\mu_b)

    where `x` is the pixel spectrum, :math:`\mu_b` is the background
    mean, and :math:`\Sigma` is the background covariance.

    Arguments:

        `X` (numpy.ndarray):

            For the first calling method shown, `X` can be an image with
            shape (R, C, B) or an ndarray of shape (R * C, B). If the
            `background` keyword is given, it will be used for the image
            background statistics; otherwise, background statistics will be
            computed from `X`.

            If the `window` keyword is given, `X` must be a 3-dimensional
            array and background statistics will be computed for each point
            in the image using a local window defined by the keyword.


        `background` (`GaussianStats`):

            The Gaussian statistics for the background (e.g., the result
            of calling :func:`calc_stats`). If no background stats are
            provided, they will be estimated based on data passed to the
            detector.

        `window` (2-tuple of odd integers):

            Must have the form (`inner`, `outer`), where the two values
            specify the widths (in pixels) of inner and outer windows centered
            about the pixel being evaulated. Both values must be odd integers.
            The background mean and covariance will be estimated from pixels
            in the outer window, excluding pixels within the inner window. For
            example, if (`inner`, `outer`) = (5, 21), then the number of
            pixels used to estimate background statistics will be
            :math:`21^2 - 5^2 = 416`.

            The window are modified near image borders, where full, centered
            windows cannot be created. The outer window will be shifted, as
            needed, to ensure that the outer window still has height and width
            `outer` (in this situation, the pixel being evaluated will not be
            at the center of the outer window). The inner window will be
            clipped, as needed, near image borders. For example, assume an
            image with 145 rows and columns. If the window used is
            (5, 21), then for the image pixel at (0, 0) (upper left corner),
            the the inner window will cover `image[:3, :3]` and the outer
            window will cover `image[:21, :21]`. For the pixel at (50, 1), the
            inner window will cover `image[48:53, :4]` and the outer window
            will cover `image[40:51, :21]`.
            
        `cov` (ndarray):

            An optional covariance to use. If this parameter is given, `cov`
            will be used for all RX calculations (background covariance
            will not be recomputed in each window) and only the background
            mean will be recomputed in each window.

    Returns numpy.ndarray:

        The return value will be the RX detector score (squared Mahalanobis
        distance) for each pixel given.  If `X` has shape (R, C, B), the
        returned ndarray will have shape (R, C)..
    
    References:

    Reed, I.S. and Yu, X., "Adaptive multiple-band CFAR detection of an optical
    pattern with unknown spectral distribution," IEEE Trans. Acoust.,
    Speech, Signal Processing, vol. 38, pp. 1760-1770, Oct. 1990.
    '''
    if background is not None and window is not None:
        raise ValueError('`background` and `window` keywords are mutually ' \
                         'exclusive.')
    if window is not None:
        rx = RX()
        def rx_wrapper(bg, x):
            rx.set_background(bg)
            return rx(x)
        return map_outer_window_stats(rx_wrapper, X, window[0], window[1],
                                      dim_out=1, cov=cov)
    else:
        return RX(background)(X)

class ACE():
    r'''Adaptive Coherence/Cosine Estimator (ACE).
    '''

    def __init__(self, target, background=None, **kwargs):
        '''Creates the callable detector for target and background.

        Arguments:

            `target` (ndarray or sequence of ndarray):

                Can be either:

                    A length-B ndarray. In this case, `target` specifies a single
                    target spectrum to be detected. The return value will be an
                    ndarray with shape (R, C).

                    An ndarray with shape (D, B). In this case, `target` contains
                    `D` length-B targets that define a subspace for the detector.
                    The return value will be an ndarray with shape (R, C).

            `background` (`GaussianStats`):

                The Gaussian statistics for the background (e.g., the result
                of calling :func:`calc_stats`). If no background stats are
                provided, they will be estimated based on data passed to the
                detector.

        Keyword Arguments:

            `vectorize` (bool, default True):

                Specifies whether the __call__ method should attempt to vectorize
                operations. This typicall results in faster computation but will
                consume more memory.
        '''
        for k in kwargs:
            if k not in ('vectorize'):
                raise ValueError('Invalid keyword: {0}'.format(k))
        self.vectorize = kwargs.get('vectorize', True)
        self._target = None
        self._background = None
        
        self.set_target(target)
        if background is not None:
            self.set_background(background)
        else:
            self._background = None

    def set_target(self, target):
        '''Specifies target or target subspace used by the detector.

        Arguments:

            `target` (ndarray or sequence of ndarray):

                Can be either:

                    A length-B ndarray. In this case, `target` specifies a single
                    target spectrum to be detected. The return value will be an
                    ndarray with shape (R, C).

                    An ndarray with shape (D, B). In this case, `target` contains
                    `D` length-B targets that define a subspace for the detector.
                    The return value will be an ndarray with shape (R, C).
        '''
        if target is None:
            self._target = None
        else:
            self._target = np.array(target, ndmin=2)
        self._update_constants()

    def set_background(self, stats):
        '''Sets background statistics to be used when applying the detector.

        Arguments:
        
            `stats` (`GaussianStats`):

                The Gaussian statistics for the background (e.g., the result
                of calling :func:`calc_stats`). If no background stats are
                provided, they will be estimated based on data passed to the
                detector.
        '''
        self._background = stats
        self._update_constants()

    def _update_constants(self):
        '''Computes and caches constants used when applying the detector.'''
        if self._background is not None and self._target is not None:
            if self._background.mean is not None:
                target = (self._target - self._background.mean).T
            else:
                target = self._target.T
            self._S = self._background.sqrt_inv_cov.dot(target)
            self._P = self._S.dot(np.linalg.pinv(self._S))
        else:
            self._C = None
            self._P = None
        
    def __call__(self, X):
        '''Compute ACE detector scores for X.

        Arguments:

            `X` (numpy.ndarray):

                For an image with shape (R, C, B), `X` can be a vector of
                length B (single pixel) or an ndarray of shape (R, C, B) or
                (R * C, B).

        Returns numpy.ndarray or float:

            The return value will be the RX detector score (squared Mahalanobis
            distance) for each pixel given.  If `X` is a single pixel, a float
            will be returned; otherwise, the return value will be an ndarray
            of floats with one less dimension than the input.
        '''
        if not isinstance(X, np.ndarray):
           raise TypeError('Expected a numpy.ndarray.')

        shape = X.shape

        if X.ndim == 1:
            # Compute ACE score for single pixel
            if self._background.mean is not None:
                X = X - self._background.mean
            z = self._background.sqrt_inv_cov.dot(X)
            return z.dot(self._P).dot(z) / (z.dot(z))

        if self._background is None:
            self.set_background(calc_stats(X))

        if self.vectorize:
            # Compute all scores at once
            
            if self._background.mean is not None:
                X = X - self._background.mean

            if X.ndim == 3:
                X = X.reshape((-1, X.shape[-1]))

            z = self._background.sqrt_inv_cov.dot(X.T).T
            zP = np.dot(z, self._P)
            zPz = np.einsum('ij,ij->i', zP, z)
            zz = np.einsum('ij,ij->i', z, z)

            return (zPz / zz).reshape(shape[:-1])

        else:
            # Call recursively for each pixel
            return np.apply_along_axis(self, -1, X)


def ace(X, target, background=None, window=None, cov=None, **kwargs):
    r'''Returns Adaptive Coherence/Cosine Estimator (ACE) detection scores.

    Usage:

        y = ace(X, target, background)

        y = ace(X, target, window=<win> [, cov=<cov>])
        
    Arguments:

        `X` (numpy.ndarray):

            For the first calling method shown, `X` can be an ndarray with
            shape (R, C, B) or an ndarray of shape (R * C, B). If the
            `background` keyword is given, it will be used for the image
            background statistics; otherwise, background statistics will be
            computed from `X`.

            If the `window` keyword is given, `X` must be a 3-dimensional
            array and background statistics will be computed for each point
            in the image using a local window defined by the keyword.

        `target` (ndarray or sequence of ndarray):

            If `X` has shape (R, C, B), `target` can be any of the following:

                A length-B ndarray. In this case, `target` specifies a single
                target spectrum to be detected. The return value will be an
                ndarray with shape (R, C).

                An ndarray with shape (D, B). In this case, `target` contains
                `D` length-B targets that define a subspace for the detector.
                The return value will be an ndarray with shape (R, C).
    
                A length-D sequence (e.g., list or tuple) of length-B ndarrays.
                In this case, the detector will be applied seperately to each of
                the `D` targets. This is equivalent to calling the function
                sequentially for each target and stacking the results but is
                much faster. The return value will be an ndarray with shape
                (R, C, D).
    
        `background` (`GaussianStats`):

            The Gaussian statistics for the background (e.g., the result
            of calling :func:`calc_stats` for an image). This argument is not
            required if `window` is given.

        `window` (2-tuple of odd integers):

            Must have the form (`inner`, `outer`), where the two values
            specify the widths (in pixels) of inner and outer windows centered
            about the pixel being evaulated. Both values must be odd integers.
            The background mean and covariance will be estimated from pixels
            in the outer window, excluding pixels within the inner window. For
            example, if (`inner`, `outer`) = (5, 21), then the number of
            pixels used to estimate background statistics will be
            :math:`21^2 - 5^2 = 416`. If this argument is given, `background`
            is not required (and will be ignored, if given).

            The window is modified near image borders, where full, centered
            windows cannot be created. The outer window will be shifted, as
            needed, to ensure that the outer window still has height and width
            `outer` (in this situation, the pixel being evaluated will not be
            at the center of the outer window). The inner window will be
            clipped, as needed, near image borders. For example, assume an
            image with 145 rows and columns. If the window used is
            (5, 21), then for the image pixel at (0, 0) (upper left corner),
            the the inner window will cover `image[:3, :3]` and the outer
            window will cover `image[:21, :21]`. For the pixel at (50, 1), the
            inner window will cover `image[48:53, :4]` and the outer window
            will cover `image[40:51, :21]`.
            
        `cov` (ndarray):

            An optional covariance to use. If this parameter is given, `cov`
            will be used for all matched filter calculations (background
            covariance will not be recomputed in each window) and only the
            background mean will be recomputed in each window. If the
            `window` argument is specified, providing `cov` will allow the
            result to be computed *much* faster.

    Keyword Arguments:

        `vectorize` (bool, default True):

            Specifies whether the function should attempt to vectorize
            operations. This typicall results in faster computation but will
            consume more memory.

    Returns numpy.ndarray:

        The return value will be the ACE scores for each input pixel. The shape
        of the returned array will be either (R, C) or (R, C, D), depending on
        the value of the `target` argument.


    References:

    Kraut S. & Scharf L.L., "The CFAR Adaptive Subspace Detector is a Scale-
    Invariant GLRT," IEEE Trans. Signal Processing., vol. 47 no. 9, pp. 2538-41,
    Sep. 1999
    '''
    if background is not None and window is not None:
        raise ValueError('`background` and `window` keywords are mutually ' \
                         'exclusive.')
    detector = ACE(target, background, **kwargs)
    if window is None:
        # Use common background statistics for all pixels
        if isinstance(target, np.ndarray):
            # Single detector score for target subspace for each pixel
            result = detector(X)
        else:
            # Separate score arrays for each target in target list
            if background is None:
                detector.set_background(calc_stats(X))
            def apply_to_target(t):
                detector.set_target(t)
                return detector(X)
            result = np.array([apply_to_target(t) for t in target])
            if result.ndim == 3:
                result = result.transpose(1, 2, 0)
    else:
        # Compute local background statistics for each pixel
        if isinstance(target, np.ndarray):
            # Single detector score for target subspace for each pixel
            def ace_wrapper(bg, x):
                detector.set_background(bg)
                return detector(x)
            result = map_outer_window_stats(ace_wrapper, X, window[0], window[1],
                                            dim_out=1, cov=cov)
        else:
            # Separate score arrays for each target in target list
            def apply_to_target(t, x):
                detector.set_target(t)
                return detector(x)
            def ace_wrapper(bg, x):
                detector.set_background(bg)
                return [apply_to_target(t, x) for t in target]
            result = map_outer_window_stats(ace_wrapper, X, window[0], window[1],
                                            dim_out=len(target), cov=cov)
            if result.ndim == 3:
                result = result.transpose(1, 2, 0)

    # Convert NaN values to zero
    result = np.nan_to_num(result)
    if isinstance(result, np.ndarray):
        return np.clip(result, 0, 1, out=result)
    else:
        return np.clip(result, 0, 1)