File: spatial.py

package info (click to toggle)
python-spectral 0.22.4-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 1,064 kB
  • sloc: python: 13,161; makefile: 7
file content (785 lines) | stat: -rw-r--r-- 27,113 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
'''
Functions over spatial regions of images.
'''

from __future__ import absolute_import, division, print_function, unicode_literals

__all__ = ['map_window', 'map_outer_window_stats', 'map_class_ids',
           'map_classes']

import itertools
import numpy as np

import spectral as spy
from .algorithms import GaussianStats, iterator_ij

def get_window_bounds(nrows, ncols, height, width, i, j):
    '''Returns boundaries of an image window centered on a specified pixel.

    Arguments:

        `nrows` (int):

            Total number of rows in the image

        `ncols` (int):

            Total number of columns in the image

        `height` (int):

            Height of the desired window (in pixels)

        `width` (int):

            Width of the desired window (in pixels)

        `i` (int):

            Row index of the pixel

        `j` (int):

            Column index of the pixel

    Return value:

        A 4-tuple of ints of the form

            (row_start, row_stop, col_start, col_stop).
            
    The dimensions of the window will always be (`height`, `width`). For
    pixels near the border of the image where there are insufficient pixels
    between the specified pixel and image border, the window will be flush
    against the border of the image and the pixel position will be offset
    from the center of the widow.

    For an alternate function that clips window pixels near the border of the
    image, see `get_window_bounds_clipped`.
    '''
    if height > nrows or width > ncols:
        raise ValueError('Window size is too large for image dimensions.')

    rmin = i - height // 2
    rmax = rmin + height
    if rmin < 0:
        rmax = height
        rmin = 0
    elif rmax > nrows:
        rmax = nrows
        rmin = nrows - height

    cmin = j - width // 2
    cmax = cmin + width
    if cmin < 0:
        cmax = width
        cmin = 0
    elif cmax > ncols:
        cmax = ncols
        cmin = ncols - width

    return (rmin, rmax, cmin, cmax)

def get_window_bounds_clipped(nrows, ncols, height, width, i, j):
    '''Returns boundaries of an image window centered on a specified pixel.

    Arguments:

        `nrows` (int):

            Total number of rows in the image

        `ncols` (int):

            Total number of columns in the image

        `height` (int):

            Height of the desired window (in pixels)

        `width` (int):

            Width of the desired window (in pixels)

        `i` (int):

            Row index of the pixel

        `j` (int):

            Column index of the pixel

    Return value:

        A 4-tuple of ints of the form

            (row_start, row_stop, col_start, col_stop).
            
    Near the boder of the image where there are insufficient pixels between
    the specified pixel and the image border, the window will be clipped.

    For an alternate function that always returns a window with dimensions
    (`width`, `height`), see `get_window_bounds`.
    '''
    if height > nrows or width > ncols:
        raise ValueError('Window size is too large for image dimensions.')

    rmin = i - height // 2
    rmax = rmin + height
    if rmin < 0:
        rmin = 0
    elif rmax > nrows:
        rmax = nrows

    cmin = j - width // 2
    cmax = cmin + width
    if cmin < 0:
        cmin = 0
    elif cmax > ncols:
        cmax = ncols

    return (rmin, rmax, cmin, cmax)

def map_window(func, image, window, rslice=(None,), cslice=(None,),
               border='shift', dtype=None):
    '''Applies a function over a rolling spatial window.
    
    Arguments:

        `func` (callable):

            The function to apply. This function must accept two inputs:

            `X` (ndarray):

                The image data corresponding to the spatial window for the
                current pixel being evaluated. `X` will have shape
                `window + (N,)`, where `N` is the number of bands in the image.
                For pixels near the border of the image, the first two
                dimensions of `X` may be smaller if `border` is set to "clip".

            `ij` (2-tuple of integers):

                Indicates the row/column of the current pixel within the
                window. For `window` with even dimensions or for pixels near
                the image border, this may not correspond to the center pixel
                in the window.
    
        `image` (`SpyFile` or np.ndarray):

            The image on which the apply `func` with the specified window.

        `window` (int or 2-tuple of ints):

            The size of the window, in pixels. If this value is an integer,
            the height and width of the window will both be set to the value.
            Otherwise, `window` should be a tuple of the form (height, width).
            
        `rslice` (tuple):

            Tuple of `slice` parameters specifying at which rows the function
            should be applied. If not provided, `func` is applied to all rows.

        `cslice` (tuple):

            Tuple of `slice` parameters specifying at which columns the
            function should be applied. If not provided, `func` is applied to
            all columns.

        `border` (string, default "shift"):

            Indicates how to handles windows near the edge of the window. If
            the value is "shift", the window dimensions will alway be
            `(width, height)` but near the image border the pixel being
            iterated will be offset from the center of the window. If set to
            "clip", window regions falling outside the image border will be
            clipped and the window dimension will be reduced.

        `dtype` (np.dtype):

            Optional dtype for the output.

    Return value:

        Returns an np.ndarray with shape corresponding to the row and column
        start/stop indices and shape of `func` output.

    Examples:
    ---------

    To produce a new image that is a 3x3 pixel average of the input image:

    >>> f = lambda X, ij: np.mean(X.reshape((-1, X.shape[-1])), axis=0)
    >>> image_3x3 = map_window(f, image, 3)

    Perform a 5x5 pixel average but only retain values at every fifth row and
    column (i.e., simulate an image at one fifth resolution):

    >>> image.shape
    (145, 145, 220)
    >>> image_5x5 = map_window(f, image, 5, (2, -2, 5), (2, -2, 5))
    >>> image_5x5.shape
    (29, 29, 220)
    '''
    if isinstance(window, (list, tuple)):
        (height, width) = window[:]
    else:
        (height, width) = (window, window)

    if border == 'shift':
        get_window = get_window_bounds
    elif border == 'clip':
        get_window = get_window_bounds_clipped
    else:
        raise ValueError('Unrecognized border option.')

    (nrows, ncols) = image.shape[:2]

    # Row/Col indices at which to apply the windowed function
    rvals = list(range(*slice(*rslice).indices(nrows)))
    cvals = list(range(*slice(*cslice).indices(ncols)))

    def get_val(i, j):
        (r0, r1, c0, c1) = get_window(nrows, ncols, height, width, i, j)
        return func(image[r0:r1, c0:c1],
                    (i - r0, j - c0)).astype(dtype)

    return np.array([[get_val(r, c) for c in cvals]
                     for r in rvals]).astype(dtype)

def map_outer_window_stats(func, image, inner, outer, dim_out=1, cov=None,
                           dtype=None, rslice=(None,), cslice=(None,)):
    '''Maps a function accepting `GaussianStats` over a rolling spatial window.
    
    Arguments:

        `func` (callable):

            A callable object that will be applied to each pixel when the
            __call__ method is called for this object. The __call__ method
            of `func` must accept two arguments:

                - `X` (`GaussianStats`):

                    The Gaussian statistics computed from pixels in the outer
                    window (excluding the inner window).

                - `v` (ndarray):

                    An ndarray representing the pixel for which the window
                    was produced.

        `image` (`SpyFile` or np.ndarray):

            The image on which the apply `func` with the specified window.

        `inner` (int or 2-tuple of ints):

            The size of the inner window, in pixels. If this value is an integer,
            the height and width of the window will both be set to the given value.
            Otherwise, `inner` should be a tuple of the form (height, width).
            All pixels within the inner window are excluded from statistics
            computed for the associated pixel.
            
        `outer` (int or 2-tuple of ints):

            The size of the outer window, in pixels. If this value is an integer,
            the height and width of the window will both be set to the given value.
            Otherwise, `outer` should be a tuple of the form (height, width).
            All pixels in the outer window (but not in the inner window) are
            used to compute statistics for the associated pixel.
            
        `rslice` (tuple):

            Tuple of `slice` parameters specifying at which rows the function
            should be applied. If not provided, `func` is applied to all rows.

        `cslice` (tuple):

            Tuple of `slice` parameters specifying at which columns the
            function should be applied. If not provided, `func` is applied to
            all columns.

        `dtype` (np.dtype):

            Optional dtype for the output.

    Return value:

        Returns an np.ndarray whose elements are the result of mapping `func`
        to the pixels and associated window stats.

    Examples:
    ---------

    To create an RX anomaly detector with a 3x3 pixel inner window and 17x17
    outer window (note that `spectral.rx` already does this):

    >>> def mahalanobis(bg, x):
    ...     return (x - bg.mean).dot(bg.inv_cov).dot(x - bg.mean)
    ...
    >>> rx_scores = map_outer_window_stats(mahalanobis, image, 3, 17)

    '''
    mapper = WindowedGaussianBackgroundMapper(inner, outer, func, cov, dim_out,
                                              dtype)
    return mapper(image, rslice, cslice)

class WindowedGaussianBackgroundMapper(object):
    '''A class for procucing window statistics with an inner exclusion window.
    '''
    def __init__(self, inner, outer, function=None, cov=None, dim_out=None,
                 dtype=None):
        '''Creates a detector with the given inner/outer window.

        Arguments:

            `inner` (integer or 2-tuple of integers):

                Width and heigth of inner window, in pixels.

            `outer` (integer or 2-tuple of integers):

                Width and heigth of outer window, in pixels. Dimensions must
                be greater than inner window

            `function` (callable object):

                A callable object that will be applied to each pixel when the
                __call__ method is called for this object. The __call__ method
                of `function` must accept two arguments:

                    - A `GaussianStats` object.

                    - An ndarray representing the pixel for which the
                      were computed.

            `cov` (ndarray):

                An optional covariance to use. If this parameter is given,
                `cov` will be used for all RX calculations (background
                covariance will not be recomputed in each window). Only the
                background mean will be recomputed in each window).

            `dim_out` (int):

                The dimensionality of the output of `function` when called on
                a pixel spectrum. If this value is not specified, `function`
                will be checked to see if it has a `dim_out` member. If it
                does not, `dim_out` will be assumed to be 1.

            `dtype`:

                Optional dtype for the output array. If not specified,
                np.float32 is used.
        '''
        if isinstance(inner, (list, tuple)):
            self.inner = inner[:]
        else:
            self.inner = (inner, inner)
        if isinstance(outer, (list, tuple)):
            self.outer = outer[:]
        else:
            self.outer = (outer, outer)
        self.callable = function
        self.cov = cov
        self.dim_out = dim_out
        self.create_mask = None
        if dtype is not None:
            self.dtype = dtype
        else:
            self.dtype = np.float32

    def __call__(self, image, rslice=(None,), cslice=(None,)):
        '''Applies the objects callable function to the image data.

        Arguments:

            `image` (numpy.ndarray):

                An image with shape (R, C, B).

            `rslice` (tuple):

                Tuple of `slice` parameters specifying at which rows the function
                should be applied. If not provided, `func` is applied to all rows.

            `cslice` (tuple):

                Tuple of `slice` parameters specifying at which columns the
                function should be applied. If not provided, `func` is applied to
                all columns.

        Returns numpy.ndarray:

            An array whose elements correspond to the outputs from the
            object's callable function.
        '''
        (R, C, B) = image.shape
        (row_border, col_border) = [x // 2 for x in self.outer]

        if self.dim_out is not None:
            dim_out = self.dim_out
        elif hasattr(self.callable, 'dim_out') and \
          self.callable.dim_out is not None:
            dim_out = self.callable.dim_out
        else:
            dim_out = 1

        # Row/Col indices at which to apply the windowed function
        rvals = list(range(*slice(*rslice).indices(R)))
        cvals = list(range(*slice(*cslice).indices(C)))

        nrows_out = len(rvals)
        ncols_out = len(cvals)

        if dim_out > 1:
            x = np.ones((nrows_out, ncols_out, dim_out),
                        dtype=np.float32) * -1.0
        else:
            x = np.ones((nrows_out, ncols_out), dtype=self.dtype) * -1.0

        npixels = self.outer[0] * self.outer[1] - self.inner[0] * self.inner[1]
        if self.cov is None and npixels < B:
            raise ValueError('Window size provides too few samples for ' \
                             'image data dimensionality.')

        if self.create_mask is not None:
            create_mask = self.create_mask
        else:
            create_mask = inner_outer_window_mask_creator(image.shape,
                                                          self.inner,
                                                          self.outer)

        interior_mask = create_mask(R // 2, C // 2, True)[2].ravel()
        interior_indices = np.argwhere(interior_mask == 0).squeeze()

        (i_interior_start, i_interior_stop) = (row_border, R - row_border)
        (j_interior_start, j_interior_stop) = (col_border, C - col_border)

        status = spy._status
        status.display_percentage('Processing image: ')
        if self.cov is not None:
            # Since we already have the covariance, just use np.mean to get
            # means of the inner window and outer (including the inner), then
            # use those to calculate the mean of the outer window alone.
            background = GaussianStats(cov=self.cov)
            for i in range(nrows_out):
                for j in range(ncols_out):
                    (inner, outer) = create_mask(rvals[i], cvals[j], False)
                    N_in = (inner[1] - inner[0]) * (inner[3] - inner[2])
                    N_tot = (outer[1] - outer[0]) * (outer[3] - outer[2])
                    mean_out = np.mean(image[outer[0]: outer[1],
                                             outer[2]: outer[3]].reshape(-1, B),
                                             axis=0)
                    mean_in = np.mean(image[outer[0]: outer[1],
                                            outer[2]: outer[3]].reshape(-1, B),
                                            axis=0)
                    mean = mean_out * (float(N_tot) / (N_tot - N_in)) - \
                           mean_in * (float(N_in) / (N_tot - N_in))
                    background.mean = mean
                    x[i, j] = self.callable(background,
                                            image[rvals[i], cvals[j]])
                if i % (nrows_out // 10) == 0:
                    status.update_percentage(100. * i // nrows_out)
        else:
            # Need to calculate both the mean and covariance for the outer
            # window (without the inner).
            (h, w) = self.outer[:]
            for i in range(nrows_out):
                ii = rvals[i] - h // 2
                for j in range(ncols_out):
                    jj = cvals[j] - w // 2
                    if i_interior_start <= rvals[i] < i_interior_stop and \
                        j_interior_start <= cvals[j] < j_interior_stop:
                        X = image[ii : ii + h, jj : jj + w, :]
                        indices = interior_indices
                    else:
                        (inner, (i0, i1, j0, j1), mask) = \
                          create_mask(rvals[i], cvals[j], True)
                        indices = np.argwhere(mask.ravel() == 0).squeeze()
                        X = image[i0 : i1, j0 : j1, :]
                    X = np.take(X.reshape((-1, B)), indices, axis=0)
                    mean = np.mean(X, axis=0)
                    cov = np.cov(X, rowvar=False)
                    background = GaussianStats(mean, cov)
                    x[i, j] = self.callable(background,
                                            image[rvals[i], cvals[j]])
                if i % (nrows_out // 10) == 0:
                    status.update_percentage(100. * i / nrows_out)

        status.end_percentage()
        return x

def inner_outer_window_mask_creator(image_shape, inner, outer):
    '''Returns a function to give  inner/outer windows.

    Arguments:

        `image_shape` (tuple of integers):

            Specifies the dimensions of the image for which windows are to be
            produced. Only the first two dimensions (rows, columns) is used.

        `inner` (int or 2-tuple of integers):

            Height and width of the inner window, in pixels.

        `outer` (int or 2-tuple of integers):

            Height and width of the outer window, in pixels.

    Return value:

        A function that accepts the following arguments:

            `i` (int):

                Row index of pixel for which to generate the mask
                
            `j` (int):

                Row index of pixel for which to generate the mask

            `gen_mask` (bool, default False):

                A boolean flag indicating whether to return a boolean mask of
                shape (window[1], window[1]), indicating which pixels in the
                window should be used for background statistics calculations.

        If `gen_mask` is False, the return value is a 2-tuple of 4-tuples,
        where the 2-tuples specify the start/stop row/col indices for the
        inner and outer windows, respectively. Each of the 4-tuples is of the
        form (row_start, row_stop, col_start, col_stop).

        If `gen_mask` is True, a third element is added the tuple, which is
        the boolean mask for the inner/outer window.
    '''
    (R, C) = image_shape[:2]
    if isinstance(inner, (list, tuple)):
        (hi, wi) = inner[:]
    else:
        (hi, wi) = (inner, inner)
    if isinstance(outer, (list, tuple)):
        (ho, wo) = outer[:]
    else:
        (ho, wo) = (outer, outer)

    if wi > wo or hi > ho:
        raise ValueError('Inner window dimensions must be smaller than outer.')
    
    (ai, bi) = (hi // 2, wi // 2)
    (ao, bo) = (ho // 2, wo // 2)

    def create_mask(i, j, gen_mask=False):

        # Inner window
        inner_imin = i - ai
        inner_imax = inner_imin + hi
        if inner_imin < 0:
            inner_imax = hi
            inner_imin = 0
        elif inner_imax > R:
            inner_imax = R
            inner_imin = R - hi
        
        inner_jmin = j - bi
        inner_jmax = inner_jmin + wi
        if inner_jmin < 0:
            inner_jmax = wi
            inner_jmin = 0
        elif inner_jmax > C:
            inner_jmax = C
            inner_jmin = C - wi
        
        # Outer window
        outer_imin = i - ao
        outer_imax = outer_imin + ho
        if outer_imin < 0:
            outer_imax = ho
            outer_imin = 0
        elif outer_imax > R:
            outer_imax = R
            outer_imin = R - ho
        
        outer_jmin = j - bo
        outer_jmax = outer_jmin + wo
        if outer_jmin < 0:
            outer_jmax = wo
            outer_jmin = 0
        elif outer_jmax > C:
            outer_jmax = C
            outer_jmin = C - wo
        
        inner = (inner_imin, inner_imax, inner_jmin, inner_jmax)
        outer = (outer_imin, outer_imax, outer_jmin, outer_jmax)
        if not gen_mask:
            return (inner, outer)
        mask = np.zeros((ho, wo), dtype=np.bool)
        mask[inner_imin - outer_imin : inner_imax - outer_imin,
             inner_jmin - outer_jmin : inner_jmax - outer_jmin] = True
        return (inner, outer, mask)
    return create_mask

def map_class_ids(src_class_image, dest_class_image, unlabeled=None):
    '''Create a mapping between class labels in two classification images.

    Running a classification algorithm (particularly an unsupervised one)
    multiple times on the same image can yield similar results but with
    different class labels (indices) for the same classes. This function
    produces a mapping of class indices from one classification image to
    another by finding class indices that share the most pixels between the
    two classification images.

    Arguments:

        `src_class_image` (ndarray):

            An MxN integer array of class indices. The indices in this array
            will be mapped to indices in `dest_class_image`.
    
        `dest_class_image` (ndarray):

            An MxN integer array of class indices.

        `unlabeled` (int or array of ints):

            If this argument is provided, all pixels (in both images) will be
            ignored when counting coincident pixels to determine the mapping.
            If mapping a classification image to a ground truth image that has
            a labeled background value, set `unlabeled` to that value.

    Return Value:

        A dictionary whose keys are class indices from `src_class_image` and
        whose values are class indices from `dest_class_image`.

    .. seealso::

       :func:`map_classes`
    '''
    src_ids = list(set(src_class_image.ravel()))
    dest_ids = list(set(dest_class_image.ravel()))
    cmap = {}
    if unlabeled is not None:
        if isinstance(unlabeled, int):
            unlabeled = [unlabeled]
        for i in unlabeled:
            if i in src_ids:
                src_ids.remove(i)
                cmap[i] = i
            if i in dest_ids:
                dest_ids.remove(i)
    else:
        unlabeled = []
    N_src = len(src_ids)
    N_dest = len(dest_ids)

    # Create matrix of coincidence counts between classes in src and dest.
    matches = np.zeros((N_src, N_dest), np.uint16)
    for i in range(N_src):
        src_is_i = (src_class_image == src_ids[i])
        for j in range(N_dest):
            matches[i, j] = np.sum(np.logical_and(src_is_i,
                                                  dest_class_image == dest_ids[j]))

    unmapped = set(src_ids)
    dest_available = set(dest_ids)
    while len(unmapped) > 0:
        (i, j) = tuple(np.argwhere(matches == np.max(matches))[0])
        mmax = matches[i, j]
        if mmax == 0:
            # Nothing left to map. Pick unused indices from dest_class_image
            for (old, new) in zip(sorted(unmapped), sorted(dest_available)):
                cmap[old] = new
                unmapped.remove(old)
                dest_available.remove(new)
            for old in unmapped:
                # The list of target classes has been exhausted. Pick the
                # smallest dest value that isn't already used.
                def next_id():
                    for ii in itertools.count():
                        if ii not in unlabeled and ii not in cmap.values():
                            return ii
                cmap[old] = next_id()
            break
        cmap[src_ids[i]] = dest_ids[j]
        unmapped.remove(src_ids[i])
        dest_available.remove(dest_ids[j])
        matches[i, :] = 0
        matches[:, j] = 0
    return cmap

def map_classes(class_image, class_id_map, allow_unmapped=False):
    '''Modifies class indices according to a class index mapping.

    Arguments:

        `class_image`: (ndarray):

            An MxN array of integer class indices.

        `class_id_map`: (dict):

            A dict whose keys are indices from `class_image` and whose values
            are new values for the corresponding indices. This value is
            usually the output of :func:`map_class_ids`.

        `allow_unmapped` (bool, default False):

            A flag indicating whether class indices can appear in `class_image`
            without a corresponding key in `class_id_map`. If this value is
            False and an index in the image is found without a mapping key,
            a :class:`ValueError` is raised. If True, the unmapped index will
            appear unmodified in the output image.

    Return Value:

        An integer-valued ndarray with same shape as `class_image`

    Example:

        >>> m = spy.map_class_ids(result, gt, unlabeled=0)
        >>> result_mapped = spy.map_classes(result, m)

    .. seealso::

       :func:`map_class_ids`
    '''
    if not allow_unmapped  \
      and not set(class_id_map.keys()).issuperset(set(class_image.ravel())):
        raise ValueError('`src` has class values with no mapping key')
    mapped = np.array(class_image)
    for (i, j) in class_id_map.items():
        mapped[class_image == i] = j
    return mapped

def expand_binary_mask_for_window(mask, height, width):
    '''Returns a new mask including window around each pixel in source mask.

    Arguments:

        `mask` (2D ndarray):

            An ndarray whose non-zero elements define a mask.

        `height` (int):

            Height of the window.

        `width` (int):

            Width of the window

    Returns a new mask of ones and zeros with same shape as `mask`. For each
    non-zero element in mask, the returned mask will contain a value of one
    for all pixels in the `height`x`width` window about the pixel and zeros
    elsewhere.
    '''
    m = np.zeros_like(mask)
    (mask_height, mask_width) = mask.shape
    for (i, j) in iterator_ij(mask):
        (r0, r1, c0, c1) = get_window_bounds_clipped(mask_height, mask_width,
                                                     height, width, i, j)
        m[r0:r1, c0:c1] = 1
    return m