1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
'''
Runs unit tests for dimensionality reduction algorithms.
To run the unit tests, type the following from the system command line:
# python -m spectral.tests.dimensionality
'''
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
import spectral as spy
from spectral.tests.spytest import SpyTest, test_method
class DimensionalityTest(SpyTest):
'''Tests various math functions.'''
def setup(self):
self.data = spy.open_image('92AV3C.lan').load()
def test_mnf_all_equals_data(self):
'''Test that MNF transform with all components equals original data.'''
data = self.data
signal = spy.calc_stats(data)
noise = spy.noise_from_diffs(data[117: 137, 85: 122, :])
mnfr = spy.mnf(signal, noise)
denoised = mnfr.denoise(data, num=data.shape[-1])
assert(np.allclose(denoised, data))
def test_ppi(self):
'''Tests that ppi function runs'''
data = self.data
p = spy.ppi(data, 4)
def test_ppi_threshold(self):
'''Tests that ppi function runs with threshold arg'''
data = self.data
p = spy.ppi(data, 4, 10)
def test_ppi_continues(self):
'''Tests that running ppi with initial indices works as expected.'''
data = self.data
s = np.random.get_state()
p = spy.ppi(data, 4)
np.random.set_state(s)
p2 = spy.ppi(data, 2)
p2 = spy.ppi(data, 2, start=p2)
assert(np.all(p == p2))
def test_ppi_centered(self):
'''Tests that ppi with mean-subtracted data works as expected.'''
data = self.data
s = np.random.get_state()
p = spy.ppi(data, 4)
np.random.set_state(s)
data_centered = data - spy.calc_stats(data).mean
p2 = spy.ppi(data_centered, 4)
assert(np.all(p == p2))
def test_smacc_minimal(self):
'''Tests smacc correctness on minimal example.'''
H = np.array([
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 1.0]
])
S, F, R = spy.smacc(H)
assert(np.allclose(np.matmul(F, S) + R, H))
assert(np.min(F) == 0.0)
expected_S = np.array([
# First two longer ones.
[1., 1., 0.],
[0., 1., 1.],
# First of the two shorted ones. Other can be expressed other 3.
[1., 0., 0.],
])
assert(np.array_equal(S, expected_S))
def test_smacc_runs(self):
'''Tests that smacc runs without additional arguments.'''
# Without scaling numeric errors accumulate.
scaled_data = self.data / 10000
S, F, R = spy.smacc(scaled_data)
data_shape = scaled_data.shape
H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
assert(np.allclose(np.matmul(F, S) + R, H))
assert(np.min(F) == 0.0)
assert(len(S.shape) == 2 and S.shape[0] == 9 and S.shape[1] == 220)
def test_smacc_min_endmembers(self):
'''Tests that smacc runs with min_endmember argument.'''
# Without scaling numeric errors accumulate.
scaled_data = self.data / 10000
S, F, R = spy.smacc(scaled_data, 10)
data_shape = scaled_data.shape
H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
assert(np.allclose(np.matmul(F, S) + R, H))
assert(np.min(F) == 0.0)
assert(len(S.shape) == 2 and S.shape[0] == 10 and S.shape[1] == 220)
def test_smacc_max_residual_norm(self):
'''Tests that smacc runs with max_residual_norm argument.'''
# Without scaling numeric errors accumulate.
scaled_data = self.data / 10000
S, F, R = spy.smacc(scaled_data, 9, 0.8)
data_shape = scaled_data.shape
H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
assert(np.allclose(np.matmul(F, S) + R, H))
assert(np.min(F) == 0.0)
residual_norms = np.einsum('ij,ij->i', R, R)
assert(np.max(residual_norms) <= 0.8)
def test_pca_runs(self):
'''Should be able to compute PCs and transform data.'''
data = self.data
xdata = spy.principal_components(data).transform(data)
def test_pca_runs_from_stats(self):
'''Should be able to pass image stats to PCA function.'''
data = self.data
stats = spy.calc_stats(data)
xdata = spy.principal_components(stats).transform(data)
def test_orthogonalize(self):
'''Can correctly create an orthogonal basis from vectors.'''
x = np.linspace(0, np.pi, 1001)
# Create sin and cos vectors of unit length
sin_h = np.sin(x)
sin_h /= np.linalg.norm(sin_h)
cos_h = np.cos(x)
cos_h /= np.linalg.norm(cos_h)
X = np.array([50 * sin_h, 75 * cos_h])
Y = spy.orthogonalize(X)
assert(np.allclose(Y.dot(Y.T), np.array([[1, 0], [0, 1]])))
assert(np.allclose(X.dot(Y.T), np.array([[50, 0], [0, 75]])))
def test_orthogonalize_subset(self):
'''Can correctly create an orthogonal basis from vector subset.'''
x = np.linspace(0, np.pi, 1001)
# Create sin and cos vectors of unit length
sin_h = np.sin(x)
sin_h /= np.linalg.norm(sin_h)
cos_h = np.cos(x)
cos_h /= np.linalg.norm(cos_h)
# First vector in X will already be a unit vector
X = np.array([sin_h, 75 * cos_h])
Y = spy.orthogonalize(X, start=1)
assert(np.allclose(Y.dot(Y.T), np.array([[1, 0], [0, 1]])))
assert(np.allclose(X.dot(Y.T), np.array([[1, 0], [0, 75]])))
def run():
print('\n' + '-' * 72)
print('Running dimensionality tests.')
print('-' * 72)
test = DimensionalityTest()
test.run()
if __name__ == '__main__':
from spectral.tests.run import parse_args, reset_stats, print_summary
parse_args()
reset_stats()
run()
print_summary()
|