1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
import collections
import itertools
import os
from copy import copy
import sqlalchemy as sa
from sqlalchemy.engine.url import make_url
from sqlalchemy.exc import OperationalError, ProgrammingError
from sqlalchemy_utils.expressions import explain_analyze
from .orm import quote
class PlanAnalysis(object):
def __init__(self, plan):
self.plan = plan
@property
def node_types(self):
types = [self.plan['Node Type']]
if 'Plans' in self.plan:
for plan in self.plan['Plans']:
analysis = PlanAnalysis(plan)
types.extend(analysis.node_types)
return types
class QueryAnalysis(object):
def __init__(self, result_set):
self.plan = result_set[0]['Plan']
if 'Total Runtime' in result_set[0]:
# PostgreSQL versions < 9.4
self.runtime = result_set[0]['Total Runtime']
else:
# PostgreSQL versions >= 9.4
self.runtime = (
result_set[0]['Execution Time'] +
result_set[0]['Planning Time']
)
@property
def node_types(self):
return list(PlanAnalysis(self.plan).node_types)
def __repr__(self):
return '<QueryAnalysis runtime=%r>' % self.runtime
def analyze(conn, query):
"""
Analyze query using given connection and return :class:`QueryAnalysis`
object. Analysis is performed using database specific EXPLAIN ANALYZE
construct and then examining the results into structured format. Currently
only PostgreSQL is supported.
Getting query runtime (in database level) ::
from sqlalchemy_utils import analyze
analysis = analyze(conn, 'SELECT * FROM article')
analysis.runtime # runtime as milliseconds
Analyze can be very useful when testing that query doesn't issue a
sequential scan (scanning all rows in table). You can for example write
simple performance tests this way.::
query = (
session.query(Article.name)
.order_by(Article.name)
.limit(10)
)
analysis = analyze(self.connection, query)
analysis.node_types # [u'Limit', u'Index Only Scan']
assert 'Seq Scan' not in analysis.node_types
.. versionadded: 0.26.17
:param conn: SQLAlchemy Connection object
:param query: SQLAlchemy Query object or query as a string
"""
return QueryAnalysis(
conn.execute(
explain_analyze(query, buffers=True, format='json')
).scalar()
)
def escape_like(string, escape_char='*'):
"""
Escape the string paremeter used in SQL LIKE expressions.
::
from sqlalchemy_utils import escape_like
query = session.query(User).filter(
User.name.ilike(escape_like('John'))
)
:param string: a string to escape
:param escape_char: escape character
"""
return (
string
.replace(escape_char, escape_char * 2)
.replace('%', escape_char + '%')
.replace('_', escape_char + '_')
)
def json_sql(value, scalars_to_json=True):
"""
Convert python data structures to PostgreSQL specific SQLAlchemy JSON
constructs. This function is extremly useful if you need to build
PostgreSQL JSON on python side.
.. note::
This function needs PostgreSQL >= 9.4
Scalars are converted to to_json SQLAlchemy function objects
::
json_sql(1) # Equals SQL: to_json(1)
json_sql('a') # to_json('a')
Mappings are converted to json_build_object constructs
::
json_sql({'a': 'c', '2': 5}) # json_build_object('a', 'c', '2', 5)
Sequences (other than strings) are converted to json_build_array constructs
::
json_sql([1, 2, 3]) # json_build_array(1, 2, 3)
You can also nest these data structures
::
json_sql({'a': [1, 2, 3]})
# json_build_object('a', json_build_array[1, 2, 3])
:param value:
value to be converted to SQLAlchemy PostgreSQL function constructs
"""
scalar_convert = sa.text
if scalars_to_json:
scalar_convert = lambda a: sa.func.to_json(sa.text(a))
if isinstance(value, collections.Mapping):
return sa.func.json_build_object(
*(
json_sql(v, scalars_to_json=False)
for v in itertools.chain(*value.items())
)
)
elif isinstance(value, str):
return scalar_convert("'{0}'".format(value))
elif isinstance(value, collections.Sequence):
return sa.func.json_build_array(
*(
json_sql(v, scalars_to_json=False)
for v in value
)
)
elif isinstance(value, (int, float)):
return scalar_convert(str(value))
return value
def has_index(column):
"""
Return whether or not given column has an index. A column has an index if
it has a single column index or it is the first column in compound column
index.
:param column: SQLAlchemy Column object
.. versionadded: 0.26.2
::
from sqlalchemy_utils import has_index
class Article(Base):
__tablename__ = 'article'
id = sa.Column(sa.Integer, primary_key=True)
title = sa.Column(sa.String(100))
is_published = sa.Column(sa.Boolean, index=True)
is_deleted = sa.Column(sa.Boolean)
is_archived = sa.Column(sa.Boolean)
__table_args__ = (
sa.Index('my_index', is_deleted, is_archived),
)
table = Article.__table__
has_index(table.c.is_published) # True
has_index(table.c.is_deleted) # True
has_index(table.c.is_archived) # False
Also supports primary key indexes
::
from sqlalchemy_utils import has_index
class ArticleTranslation(Base):
__tablename__ = 'article_translation'
id = sa.Column(sa.Integer, primary_key=True)
locale = sa.Column(sa.String(10), primary_key=True)
title = sa.Column(sa.String(100))
table = ArticleTranslation.__table__
has_index(table.c.locale) # False
has_index(table.c.id) # True
"""
table = column.table
if not isinstance(table, sa.Table):
raise TypeError(
'Only columns belonging to Table objects are supported. Given '
'column belongs to %r.' % table
)
primary_keys = table.primary_key.columns.values()
return (
(primary_keys and column is primary_keys[0])
or
any(
index.columns.values()[0] is column
for index in table.indexes
)
)
def has_unique_index(column):
"""
Return whether or not given column has a unique index. A column has a
unique index if it has a single column primary key index or it has a
single column UniqueConstraint.
:param column: SQLAlchemy Column object
.. versionadded: 0.27.1
::
from sqlalchemy_utils import has_unique_index
class Article(Base):
__tablename__ = 'article'
id = sa.Column(sa.Integer, primary_key=True)
title = sa.Column(sa.String(100))
is_published = sa.Column(sa.Boolean, unique=True)
is_deleted = sa.Column(sa.Boolean)
is_archived = sa.Column(sa.Boolean)
table = Article.__table__
has_unique_index(table.c.is_published) # True
has_unique_index(table.c.is_deleted) # False
has_unique_index(table.c.id) # True
:raises TypeError: if given column does not belong to a Table object
"""
table = column.table
if not isinstance(table, sa.Table):
raise TypeError(
'Only columns belonging to Table objects are supported. Given '
'column belongs to %r.' % table
)
pks = table.primary_key.columns
return (
(column is pks.values()[0] and len(pks) == 1)
or
any(
match_columns(constraint.columns.values()[0], column) and
len(constraint.columns) == 1
for constraint in column.table.constraints
if isinstance(constraint, sa.sql.schema.UniqueConstraint)
)
)
def match_columns(column, column2):
return column.table is column2.table and column.name == column2.name
def is_auto_assigned_date_column(column):
"""
Returns whether or not given SQLAlchemy Column object's is auto assigned
DateTime or Date.
:param column: SQLAlchemy Column object
"""
return (
(
isinstance(column.type, sa.DateTime) or
isinstance(column.type, sa.Date)
)
and
(
column.default or
column.server_default or
column.onupdate or
column.server_onupdate
)
)
def database_exists(url):
"""Check if a database exists.
:param url: A SQLAlchemy engine URL.
Performs backend-specific testing to quickly determine if a database
exists on the server. ::
database_exists('postgres://postgres@localhost/name') #=> False
create_database('postgres://postgres@localhost/name')
database_exists('postgres://postgres@localhost/name') #=> True
Supports checking against a constructed URL as well. ::
engine = create_engine('postgres://postgres@localhost/name')
database_exists(engine.url) #=> False
create_database(engine.url)
database_exists(engine.url) #=> True
"""
url = copy(make_url(url))
database = url.database
if url.drivername.startswith('postgresql'):
url.database = 'template1'
else:
url.database = None
engine = sa.create_engine(url)
if engine.dialect.name == 'postgresql':
text = "SELECT 1 FROM pg_database WHERE datname='%s'" % database
return bool(engine.execute(text).scalar())
elif engine.dialect.name == 'mysql':
text = ("SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA "
"WHERE SCHEMA_NAME = '%s'" % database)
return bool(engine.execute(text).scalar())
elif engine.dialect.name == 'sqlite':
return database == ':memory:' or os.path.exists(database)
else:
text = 'SELECT 1'
try:
url.database = database
engine = sa.create_engine(url)
engine.execute(text)
return True
except (ProgrammingError, OperationalError):
return False
def create_database(url, encoding='utf8', template=None):
"""Issue the appropriate CREATE DATABASE statement.
:param url: A SQLAlchemy engine URL.
:param encoding: The encoding to create the database as.
:param template:
The name of the template from which to create the new database. At the
moment only supported by PostgreSQL driver.
To create a database, you can pass a simple URL that would have
been passed to ``create_engine``. ::
create_database('postgres://postgres@localhost/name')
You may also pass the url from an existing engine. ::
create_database(engine.url)
Has full support for mysql, postgres, and sqlite. In theory,
other database engines should be supported.
"""
url = copy(make_url(url))
database = url.database
if url.drivername.startswith('postgresql'):
url.database = 'template1'
elif not url.drivername.startswith('sqlite'):
url.database = None
engine = sa.create_engine(url)
if engine.dialect.name == 'postgresql':
if engine.driver == 'psycopg2':
from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT
engine.raw_connection().set_isolation_level(
ISOLATION_LEVEL_AUTOCOMMIT
)
if not template:
template = 'template0'
text = "CREATE DATABASE {0} ENCODING '{1}' TEMPLATE {2}".format(
quote(engine, database),
encoding,
quote(engine, template)
)
engine.execute(text)
elif engine.dialect.name == 'mysql':
text = "CREATE DATABASE {0} CHARACTER SET = '{1}'".format(
quote(engine, database),
encoding
)
engine.execute(text)
elif engine.dialect.name == 'sqlite' and database != ':memory:':
open(database, 'w').close()
else:
text = 'CREATE DATABASE {0}'.format(quote(engine, database))
engine.execute(text)
def drop_database(url):
"""Issue the appropriate DROP DATABASE statement.
:param url: A SQLAlchemy engine URL.
Works similar to the :ref:`create_database` method in that both url text
and a constructed url are accepted. ::
drop_database('postgres://postgres@localhost/name')
drop_database(engine.url)
"""
url = copy(make_url(url))
database = url.database
if url.drivername.startswith('postgresql'):
url.database = 'template1'
elif not url.drivername.startswith('sqlite'):
url.database = None
engine = sa.create_engine(url)
if engine.dialect.name == 'sqlite' and url.database != ':memory:':
os.remove(url.database)
elif engine.dialect.name == 'postgresql' and engine.driver == 'psycopg2':
from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT
engine.raw_connection().set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT)
# Disconnect all users from the database we are dropping.
version = list(
map(
int,
engine.execute('SHOW server_version').first()[0].split('.')
)
)
pid_column = (
'pid' if (version[0] >= 9 and version[1] >= 2) else 'procpid'
)
text = '''
SELECT pg_terminate_backend(pg_stat_activity.%(pid_column)s)
FROM pg_stat_activity
WHERE pg_stat_activity.datname = '%(database)s'
AND %(pid_column)s <> pg_backend_pid();
''' % {'pid_column': pid_column, 'database': database}
engine.execute(text)
# Drop the database.
text = 'DROP DATABASE {0}'.format(quote(engine, database))
engine.execute(text)
else:
text = 'DROP DATABASE {0}'.format(quote(engine, database))
engine.execute(text)
|