1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#!/usr/bin/env python3
"""
Print lots of statistics about one or more FASTA or FASTQ files.
TODO
- computation of contig N50 is relatively slow
"""
import sys
import os
import subprocess
from collections import Counter
from .. import HelpfulArgumentParser, SequenceReader, IndexedFasta
from ..dna import n_intervals, intervals_complement
from ..math import n50, frequency_median, frequency_n50
__author__ = "Marcel Martin"
def byte_frequencies(s):
return Counter(s)
try:
from sqt._helpers import byte_frequencies
except:
pass
def print_statistics(lengths, contig_lengths, shortest=None, longest=None, genome_size=None, character_frequencies=None):
"""
lengths -- a dictionary that maps length to frequency (Counter object)
"""
n = sum(lengths.values())
print('No. of sequences: {:11,}'.format(n))
if n == 0:
return
total = sum(length * count for length, count in lengths.items())
print('Total length: {:13,}'.format(total))
min_length, max_length = min(lengths), max(lengths)
if shortest:
print('Minimum length: {:13,} in entry "{}"'.format(min_length, shortest))
else:
print('Minimum length: {:13,}'.format(min_length))
if longest:
print('Maximum length: {:13,} in entry "{}"'.format(max_length, longest))
else:
print('Maximum length: {:13,}'.format(max_length))
print('Average length: {:16.2f}'.format(total / n))
print('Median length: {:13,}'.format(frequency_median(lengths)))
print('Scaffold N50: {:13,}'.format(frequency_n50(lengths)))
if genome_size:
print('Scaffold NG50: {:13,}'.format(frequency_n50(lengths, genome_size=genome_size)))
if contig_lengths:
lengths = contig_lengths
min_length, max_length = min(lengths), max(lengths)
print()
n_contigs = sum(lengths.values())
print('Number of contigs: {:13,}'.format(n_contigs))
total_c = sum(length * count for length, count in lengths.items())
print('Total contig length: {:13,}'.format(total_c))
print('Minimum contig length: {:13,}'.format(min_length))
print('Maximum contig length: {:13,}'.format(max_length))
print('Average contig length: {:16.2f}'.format(total_c / n_contigs))
print('Median contig length: {:13,}'.format(frequency_median(lengths)))
print('Contig N50: {:13,}'.format(frequency_n50(lengths)))
if character_frequencies:
print()
print("Character distribution (<char> <count> <percentage>):")
assert total == sum(character_frequencies.values())
acgt = 0
gc = 0
for upper, lower in (b'Aa', b'Cc', b'Gg', b'Tt'):
freq = character_frequencies[upper] + character_frequencies[lower]
if upper in b'GC':
gc += freq
print(chr(upper), ' {:14,} {:6.1%}'.format(freq, freq / total))
acgt += freq
other = sum(character_frequencies.values()) - acgt
print('other {:14,} {:6.2%}'.format(other, other / total))
print('ACGT {:14,} {:6.2%}'.format(acgt, acgt / total))
print('GC {:14,} {:6.2%} (of ACGT)'.format(gc, gc / (total - other)))
def filter_short_intervals(intervals, minimum_length):
for start, stop in intervals:
if stop - start >= minimum_length:
yield (start, stop)
def fasta_fastq_iter(path):
with SequenceReader(path, 'rb') as reader:
for record in reader:
seq = record.sequence #.upper()
yield (record.name, len(seq), seq)
def indexed_fasta_iter(path):
with IndexedFasta(path) as f:
for index_entry in f.index.values():
yield (index_entry.name, index_entry.length, None)
def stats(path, tolerable_gapsize, detailed):
"""
Determine scaffold lengths, contig lengths and character frequencies.
Return a tuple (scaffold_lengths, contig_lengths, character_frequencies).
"""
scaffold_lengths = Counter()
contig_lengths = Counter()
nucleotides = Counter() # nucleotide frequencies
shortest = None
longest = None
min_length = float('+inf')
max_length = -1
if not detailed and os.path.exists(path + '.fai'):
it = indexed_fasta_iter(path)
else:
it = fasta_fastq_iter(path)
for (name, length, sequence) in it:
scaffold_lengths[length] += 1
if length < min_length:
min_length = length
shortest = name
if length > max_length:
max_length = length
longest = name
if detailed and sequence is not None:
nucleotides += byte_frequencies(sequence)
intervals = intervals_complement(
filter_short_intervals(n_intervals(sequence, ord(b'N')), tolerable_gapsize), length)
for start, stop in intervals:
contig_lengths[stop - start] += 1
return scaffold_lengths, contig_lengths, shortest, longest, nucleotides
def get_argument_parser():
parser = HelpfulArgumentParser(description=__doc__)
add = parser.add_argument
add('--detailed', '-d', default=False, action='store_true',
help='Print information about the sequences themselves, '
'such as the character distribution and contig N50.')
add('--genome-size', '-g', type=int, default=None,
help='Estimated genome size. If given, also NG50 in addition to N50 is computed.')
add('--tolerable-gapsize', '-t', type=int, default=10,
help='A stretch of at most this many "N"s is not counted as a gap '
'separating contigs.')
add('fastaq', nargs='+', metavar='FASTA/FASTQ',
help='Input FASTA or FASTQ file(s) (may be gzipped).')
return parser
def main():
parser = get_argument_parser()
args = parser.parse_args()
overall_frequencies = Counter()
overall_lengths = Counter()
if not args.detailed:
character_frequencies = None
contig_lengths = None
for path in args.fastaq:
print("## File:", path)
scaffold_lengths, contig_lengths, shortest, longest, character_frequencies = \
stats(path, args.tolerable_gapsize, detailed=args.detailed)
overall_frequencies += character_frequencies
print_statistics(scaffold_lengths, contig_lengths, shortest, longest, args.genome_size, character_frequencies)
overall_lengths += scaffold_lengths
if len(args.fastaq) > 1:
print("## Summary of", len(args.fastaq), "files")
print_statistics(overall_lengths, None, None, None, args.genome_size, overall_frequencies if args.detailed else None)
if __name__ == '__main__':
main()
|