1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
#!/usr/bin/env python
""" Find enrichments of GO terms for a ranked list of genes. """
from __future__ import print_function, division
import sys
import re
import csv
import textwrap
import argparse
from itertools import product, islice
from collections import defaultdict
from functools import lru_cache
import numpy as np
import math
from scipy.misc import comb as spcomb
def argument_parser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("obo", help="The gene ontology in .obo format.")
parser.add_argument("genelist", nargs="?", default=sys.stdin, help="A ranked list of genes. Each row should contain a comma separated list of GO terms the gene is contained in.")
parser.add_argument("--draw-graph", "-g", help="Draw the graph of enriched GO terms.")
parser.add_argument("--max-partition", "-m", type=int, metavar="M", help="Consider only the first M partitions when calculating an enrichment of a GO term against the ranked genelist.")
parser.add_argument("--fixed-partition", "--forground", type=int, metavar="M", help="Consider the first M M genes as foreground and the rest as background when calculating an enrichment of a GO term against the ranked genelist.")
parser.add_argument("--max-pvalue", "-p", type=float, metavar="P", default=0.001, help="Maximum uncorrected p-value to report an enrichment.")
parser.add_argument("--usefdr", action="store_true", help="Use FDR for p-value cutoff (see above).")
parser.add_argument("--fast", "-f", action="store_true", help="Calculate an upper bound rather than the exact p-value.")
return parser
def comb(n, k, spcomb=spcomb):
return spcomb(n, k, exact=True)
############## Enrichment ################
# based on Eden et al. "GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists", BMC Bioinformatics 2009
def hypergeometric_tail(N, B, n, b, comb=comb):
"""
Computes HGT(b;N,B,n)
N -- number of overall genes
B -- size of the GO term
n -- number of tested genes
b -- number of tested genes associated with the GO term
"""
NB = comb(N,B)
hgt = sum(comb(n, i) * comb(N - n, B - i) for i in range(b, min(n, B) + 1)) / NB
return hgt
def tails(N, B, interm, max_partition, hypergeometric_tail=hypergeometric_tail):
b = 0
yield hypergeometric_tail(N, B, 1, interm[0]), 1, interm[0] # yield the first element
for n in range(2, min(len(interm), max_partition) + 1):
isin = interm[n-1]
if isin: # only need to compute the tail if b increases, else hgt will become only bigger and we need the minimum
b += 1
yield hypergeometric_tail(N, B, n, b), n, b
def min_hypergeometric_tail(N, B, interm, max_partition, tails=tails):
"""
Computes mHGT(lambda)
N -- number of overall genes
B -- size of the GO term
interm -- the vector lambda stating (with a boolean value True) for gene i in the list whether it is contained in the considered GO term
"""
return min(tails(N, B, interm, max_partition), key=lambda item: item[0])
def not_visiting_paths(N, B, R):
"""
Computes the number of paths not visiting R (PI_R(N,B)) by dynamic programming.
"""
# we shift b by 1 to allow for b=-1 at the index of 0, i.e. the real b equals b - 1
#P = np.zeros((N+1, B+2), dtype=np.uint)
P = [[0 for b in range(B+2)] for n in range(N+1)]
P[0][1] = 1
for n in range(1, N + 1):
for b in range(max(1, B + 1 - N + n), min(B + 1, n + 1) + 1):
if (n,b-1) in R:
P[n][b] = 0
else:
P[n][b] = P[n-1][b] + P[n-1][b-1]
ret = P[N][B+1] # i.e. PI[N,B] in the paper
return ret
def R(N, B, mhgt, comb=comb):
"""
Points n,b in the Grid N,B where HGT(b;N,B,n) <= mhgt
"""
validpoints = set()
NB = comb(N,B)
for n in range(1, N+1):
hgt = 0
for b in reversed(range(max(0, B - N + n), min(B, n) + 1)):
hgt += comb(n, b) * comb(N - n, B - b) / NB # calc the next element of the hypergeometric tail sum
if hgt <= mhgt:
validpoints.add((n,b))
else:
break
return validpoints
def pvalue(N, B, mhgt, not_visiting_paths=not_visiting_paths, comb=comb):
"""
Calculate the p-value for the given minimum Hypergeometric Tail score mhgt.
Then the pvalue is the probability to see a score <= mhgt given N genes in total
and B genes in the GO term.
"""
nvp = not_visiting_paths(N, B, R(N, B, mhgt))
NB = comb(N,B)
return (NB - nvp) / NB
############### GO Parser ###################
def parse_obo(obofile):
with open(obofile) as obofile:
for l in obofile:
if l.startswith("[Term]"):
goterm = GOTerm(obofile)
#if goterm.id == 1709:
yield goterm
class GOTerm:
_byid = dict()
@classmethod
def byid(cls, id):
if isinstance(id, str):
return cls._byid[goid(id)]
return cls._byid[id]
def __init__(self, obofile):
values = self.parse_goterm(obofile)
self.id = goid(values["id"][0])
self.name = values["name"][0]
self.namespace = values["namespace"][0]
self.definition = values["def"][0]
self.subset = values["subset"][0] if values["subset"] else None
self.is_a = list(map(goid, values["is_a"]))
self._byid[self.id] = self
@staticmethod
def parse_goterm(obofile):
values = defaultdict(list)
regex = re.compile("(?P<key>\w+): (?P<value>[^!]+)")
for l in obofile:
if l == "\n":
break
match = re.match(regex, l)
values[match.group("key")].append(match.group("value").strip())
return values
def __repr__(self):
return "GO:{:07} {}".format(self.id, self.name)
def goid(idstring):
return int(idstring[3:])
################ Genelist parser ##############
def parse_genelist(genelist):
for l in csv.reader(genelist, delimiter="\t"):
if len(l) > 1 and l[1]:
yield Gene(l[0], l[1:])
class Gene:
def __init__(self, id, goterms):
self.id = id
self.goterms = set(map(goid, goterms))
def interm(self, goterm):
return goterm.id in self.goterms
################ process data #################
def calc_fdrs(pvalues, sortedindex, n):
"""
Calculate FDR with the algorithm of Benjamini-Hochberg as implemented in the R package multtest.
From Benjamini-Hochberg, 1995:
let k be the largest i for which
P_i <= i / n * (q*)
then reject all H_i for i = 1,...,k. Thereby, above procedure controls the false discovery rate at q*.
In other words, the false discovery rate FDR_i for P_i is
P_i * n / i <= FDR_i .
"""
fdr = np.empty_like(pvalues)
if n:
fdr[sortedindex[n-1]] = pvalues[sortedindex[n-1]]
for i in reversed(range(n-1)):
fdr[sortedindex[i]] = min(fdr[sortedindex[i+1]], pvalues[sortedindex[i]] * (n / (i+1)), 1)
assert fdr[sortedindex[i]] >= pvalues[sortedindex[i]]
return fdr
def calc_interm(goterm, genelist):
return [goterm.id in gene.goterms for gene in genelist]
def is_hit(interm, max_partition = None):
if max_partition is None:
max_partition = len(interm)
return sum(interm[:max_partition]) >= 1
def calc_enrichments(goterms, genelist, max_partition = None, fixed_partition = None, max_pvalue = 0.001, fast = False):
N = len(genelist)
max_partition = min(len(genelist), N) if max_partition is None else max_partition
pvalues = np.ones(len(goterms))
interms = []
params = []
print("test", file=sys.stderr)
for i, goterm in enumerate(goterms):
interm = calc_interm(goterm, genelist)
interms.append(interm)
B = sum(interm)
if is_hit(interm, max_partition=max_partition):
if not fixed_partition is None:
# TODO pvalue in this case has to be computed differently
n = fixed_partition
b = sum(interm[:fixed_partition])
mhgt = hypergeometric_tail(N, B, n, b)
else:
mhgt, n, b = min_hypergeometric_tail(N, B, interm, max_partition)
if mhgt < max_pvalue: # use lower bound of p-value as in Eden et al. Plos Comp. Biol. 2007 to omit unnecessary computations
if fast:
pvalues[i] = B * mhgt
else:
pvalues[i] = pvalue(N, B, mhgt)
assert mhgt - pvalues[i] <= 0.0001
assert pvalues[i] - B * mhgt <= 0.0001
else:
n, b = 0, 0 # no hit in possible partitions
params.append((N, B, n, b))
print(i, "of", len(goterms), "done", file=sys.stderr)
return pvalues, interms, params
def significant_indices(sortedindex, hits, pvalues, max_pvalue):
return set(i for i in islice(sortedindex, hits) if pvalues[i] <= max_pvalue)
################## drawing ###################
def collect_terms(goterms, significant):
visited = set(significant)
queue = list(visited)
parents = dict()
while queue:
goterm = queue.pop(0)
parents[goterm] = list(map(GOTerm.byid, goterm.is_a))
for parent in parents[goterm]:
if parent not in visited:
visited.add(parent)
queue.append(parent)
return visited, parents
def draw_terms(outfile, goterms, pvalues, fdrs, params, significant, usefdr, maxpvalue):
stat = pvalues if not usefdr else fdrs
with open(outfile, "w") as dot:
dot.write("digraph enrichment {\n")
dot.write("node [shape=Mrecord,style=filled];")
significant = set(goterms[i] for i in significant)
visited, parents = collect_terms(goterms, significant)
for i, goterm in enumerate(goterms):
if goterm not in visited:
continue
if goterm in significant:
pval = "\\npvalue: " if not usefdr else "\\nfdr: "
pval += "{:.2e}".format(stat[i])
saturation = 1 - stat[i] / maxpvalue
else:
saturation = 0
pval = ""
dot.write("{}[label=\"{}{}\",fillcolor=\"0.0 {} 1.0\"];\n".format(goterm.id, "\\n".join(textwrap.wrap(str(goterm), 30)), pval, saturation))
for parent in parents[goterm]:
dot.write("{} -> {};\n".format(parent.id, goterm.id))
dot.write("}")
def main():
parser = argument_parser()
args = parser.parse_args()
#import yappi
#yappi.start()
if args.genelist == sys.stdin:
genelist = list(parse_genelist(args.genelist))
else:
with open(args.genelist) as f:
genelist = list(parse_genelist(f))
goterms = list(parse_obo(args.obo))
pvalues, interms, params = calc_enrichments(goterms, genelist, max_partition=args.max_partition, fixed_partition=args.fixed_partition, max_pvalue = args.max_pvalue, fast = args.fast)
hits = sum(is_hit(interm) for interm in interms)
sortedindex = sorted(range(len(pvalues)), key=pvalues.__getitem__)
fdrs = calc_fdrs(pvalues, sortedindex, hits)
if args.usefdr:
significant = significant_indices(sortedindex, hits, fdrs, args.max_pvalue)
else:
significant = significant_indices(sortedindex, hits, pvalues, args.max_pvalue)
if args.draw_graph:
draw_terms(args.draw_graph, goterms, pvalues, fdrs, params, significant, args.usefdr, args.max_pvalue)
print("goterm\tp-value\tfdr\ttotal num of genes\tgenes in GO term\tnum of genes in partition\tnum of genes in partition and GO term\tgenes")
for i in islice(sortedindex, hits):
N, B, n, b = params[i]
if i in significant:
genes = (genelist[j].id for j, isin in islice(enumerate(interms[i]), n) if isin)
print("{goterm}\t{pvalue}\t{fdr}\t{params}\t{genes}".format(goterm=goterms[i], pvalue=pvalues[i], fdr=fdrs[i], params="\t".join(map(str, (N,B,n,b))), genes="\t".join(genes)))
#with open("profile.txt", "w") as out:
# yappi.print_stats(out=out, sort_type=2)
def test():
N = 330
B = 30
mhgt = 0.0000001
while mhgt < 1:
assert mhgt <= pvalue(N, B, mhgt) <= B*mhgt
print(mhgt, pvalue(N, B, mhgt), B*mhgt)
mhgt *= 10
if __name__ == "__main__":
main()
|