File: README.stats

package info (click to toggle)
python-stats 0.6-6
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 260 kB
  • ctags: 387
  • sloc: python: 3,660; makefile: 30
file content (131 lines) | stat: -rw-r--r-- 4,720 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
stats.py module

(Requires pstat.py module.)

#################################################
#######  Written by:  Gary Strangman  ###########
#######  Last modified:  Dec 28, 2000 ###########
#################################################

A collection of basic statistical functions for python.  The function
names appear below.

IMPORTANT:  There are really *3* sets of functions.  The first set has an 'l'
prefix, which can be used with list or tuple arguments.  The second set has
an 'a' prefix, which can accept NumPy array arguments.  These latter
functions are defined only when NumPy is available on the system.  The third
type has NO prefix (i.e., has the name that appears below).  Functions of
this set are members of a "Dispatch" class, c/o David Ascher.  This class
allows different functions to be called depending on the type of the passed
arguments.  Thus, stats.mean is a member of the Dispatch class and
stats.mean(range(20)) will call stats.lmean(range(20)) while
stats.mean(Numeric.arange(20)) will call stats.amean(Numeric.arange(20)).
This is a handy way to keep consistent function names when different
argument types require different functions to be called.  Having
implementated the Dispatch class, however, means that to get info on
a given function, you must use the REAL function name ... that is
"print stats.lmean.__doc__" or "print stats.amean.__doc__" work fine,
while "print stats.mean.__doc__" will print the doc for the Dispatch
class.  NUMPY FUNCTIONS ('a' prefix) generally have more argument options
but should otherwise be consistent with the corresponding list functions.

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful

CENTRAL TENDENCY:  geometricmean
                   harmonicmean
                   mean
                   median
                   medianscore
                   mode

MOMENTS:  moment
          variation
          skew
          kurtosis
          skewtest   (for Numpy arrays only)
          kurtosistest (for Numpy arrays only)
          normaltest (for Numpy arrays only)

ALTERED VERSIONS:  tmean  (for Numpy arrays only)
                   tvar   (for Numpy arrays only)
                   tmin   (for Numpy arrays only)
                   tmax   (for Numpy arrays only)
                   tstdev (for Numpy arrays only)
                   tsem   (for Numpy arrays only)
                   describe

FREQUENCY STATS:  itemfreq
                  scoreatpercentile
                  percentileofscore
                  histogram
                  cumfreq
                  relfreq

VARIABILITY:  obrientransform
              samplevar
              samplestdev
              signaltonoise (for Numpy arrays only)
              var
              stdev
              sterr
              sem
              z
              zs
              zmap (for Numpy arrays only)

TRIMMING FCNS:  threshold (for Numpy arrays only)
                trimboth
                trim1
                round (round all vals to 'n' decimals; Numpy only)

CORRELATION FCNS:  covariance  (for Numpy arrays only)
                   correlation (for Numpy arrays only)
                   paired
                   pearsonr
                   spearmanr
                   pointbiserialr
                   kendalltau
                   linregress

INFERENTIAL STATS:  ttest_1samp
                    ttest_ind
                    ttest_rel
                    chisquare
                    ks_2samp
                    mannwhitneyu
                    ranksums
                    wilcoxont
                    kruskalwallish
                    friedmanchisquare

PROBABILITY CALCS:  chisqprob
                    erfcc
                    zprob
                    ksprob
                    fprob
                    betacf
                    gammln 
                    betai

ANOVA FUNCTIONS:  F_oneway
                  F_value

SUPPORT FUNCTIONS:  writecc
                    incr
                    sign  (for Numpy arrays only)
                    sum
                    cumsum
                    ss
                    summult
                    sumdiffsquared
                    square_of_sums
                    shellsort
                    rankdata
                    outputpairedstats
                    findwithin