File: mirror_mirror_on_the_wall.rst

package info (click to toggle)
python-stem 1.8.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 7,892 kB
  • sloc: python: 33,713; java: 312; makefile: 131; sh: 27
file content (414 lines) | stat: -rw-r--r-- 17,488 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
Mirror Mirror on the Wall
=========================

The following is an overview of **Tor descriptors**. If you're already familiar
with what they are and where to get them then you may want to skip to the end.

* :ref:`what-is-a-descriptor`
* :ref:`where-do-descriptors-come-from`
* :ref:`where-can-i-get-the-current-descriptors`
* :ref:`where-can-i-get-past-descriptors`
* :ref:`can-i-get-descriptors-from-the-tor-process`
* :ref:`can-i-create-descriptors`
* :ref:`validating-the-descriptors-content`
* :ref:`saving-and-loading-descriptors`
* :ref:`putting-it-together`
* :ref:`are-there-any-other-parsing-libraries`

.. _what-is-a-descriptor:

What is a descriptor?
---------------------

Tor is made up of two parts: the application and a distributed network of a few
thousand volunteer relays. Information about these relays is public, and made
up of documents called **descriptors**.

There are several different kinds of descriptors, the most common ones being...

================================================================================ ===========
Descriptor Type                                                                  Description
================================================================================ ===========
`Server Descriptor <../api/descriptor/server_descriptor.html>`_                  Information that relays publish about themselves. Tor clients once downloaded this information, but now they use microdescriptors instead.
`ExtraInfo Descriptor <../api/descriptor/extrainfo_descriptor.html>`_            Relay information that Tor clients do not need in order to function. This is self-published, like server descriptors, but not downloaded by default.
`Microdescriptor <../api/descriptor/microdescriptor.html>`_                      Minimalistic document that just includes the information necessary for Tor clients to work.
`Network Status Document <../api/descriptor/networkstatus.html>`_                Though Tor relays are decentralized, the directories that track the overall network are not. These central points are called **directory authorities**, and every hour they publish a document called a **consensus** (aka, network status document). The consensus in turn is made up of **router status entries**.
`Router Status Entry <../api/descriptor/router_status_entry.html>`_              Relay information provided by the directory authorities including flags, heuristics used for relay selection, etc.
`Hidden Service Descriptor <../api/descriptor/hidden_service.html>`_             Information pertaining to a `Hidden Service <https://www.torproject.org/docs/hidden-services.html.en>`_. These can only be `queried through the tor process <over_the_river.html#hidden-service-descriptors>`_.
================================================================================ ===========

.. _where-do-descriptors-come-from:

Where do descriptors come from?
-------------------------------

Descriptors fall into two camps:

* **Server**, **extra-info**, and **hidden service** descriptors are
  **self-published documents**. Relays and hidden services publish these about
  themselves, and so naturally can indicate anything they'd like in them (true
  or not).
  
  These are **self contained documents**, bundling within themselves a
  signiture Stem can `optionally check
  <./mirror_mirror_on_the_wall.html#validating-the-descriptors-content>`_.

* **Network status documents** (aka **votes**, the **consensus**, and **router
  status entries** they contain) are created by the **directory authorities**.
  For a great overview on how this works see `Jordan Wright's article on how
  the consensus is made
  <https://jordan-wright.github.io/blog/2015/05/14/how-tor-works-part-three-the-consensus/>`_.

**Microdescriptors** are merely a distilled copy of a **server descriptor**,
and so belong to the first camp.

.. _where-can-i-get-the-current-descriptors:

Where can I get the current descriptors?
----------------------------------------

To work Tor needs up-to-date relay information. As such getting the current
descriptors is easy: *just download it like Tor does*.

Every tor relay provides an **ORPort** and many provide a **DirPort** as well
which can both be downloaded from using Stem's `stem.descriptor.remote
<../api/descriptor/remote.html>`_ module. Listing relays for instance is as
easy as...

.. literalinclude:: /_static/example/current_descriptors.py
   :language: python

**Please remember that Tor is a shared resource!** If you're going to
contribute much load please consider `running a relay
<https://community.torproject.org/relay/>`_ to offset your use.

**ORPorts** communicate through the `tor protocol
<https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt>`_, and can be
downloaded from by specifying it as the endpoint... 

.. literalinclude:: /_static/example/descriptor_from_orport.py
   :language: python

**DirPorts** by contrast are simpler and specially designed to offer descriptor
information, but not all relays offer one. If no endpoint is specified we
default to downloading from the DirPorts of tor's directory authorities.

If you would like to see what raw descriptors look like try curling a relay's
DirPort. Section 6.2 of `tor's directory specification
<https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt>`_ lists the
urls you can try.

::

  % curl 128.31.0.34:9131/tor/server/all
  router Unnamed 83.227.81.207 9001 0 9030
  identity-ed25519
  -----BEGIN ED25519 CERT-----
  AQQABj3aAV7JzKHjSJjocve8jvnMwmy/Pv2HsSKoymeepddNBU5iAQAgBABw1VVB
  965QDxs+wicWj4vNXMKIkKCN4gQhvzqG2UxsgmkaQlsKiEMrIxrzwlazP6od9+hi
  WZKl3tshd0ekgUB6AAKwlvsrxl9wfy0G/Bf8PVsBftvNCWPwLR4pI3nibQU=
  -----END ED25519 CERT-----
  master-key-ed25519 cNVVQfeuUA8bPsInFo+LzVzCiJCgjeIEIb86htlMbII
  ...

.. _where-can-i-get-past-descriptors:

Where can I get past descriptors?
---------------------------------

Descriptor archives are available from `CollecTor
<https://metrics.torproject.org/collector.html>`_. If you need Tor's topology
at a prior point in time this is the place to go!

With CollecTor you can either read descriptors directly...

.. literalinclude:: /_static/example/collector_reading.py
   :language: python

... or download the descriptors to disk and read them later.

.. literalinclude:: /_static/example/collector_caching.py
   :language: python

.. _can-i-get-descriptors-from-the-tor-process:

Can I get descriptors from the Tor process?
-------------------------------------------

If you already have Tor running on your system then it is already downloading
descriptors on your behalf. Reusing these is a great way to keep from burdening
the rest of the Tor network.

Tor only gets the descriptors that it needs by default, so if you're scripting
against Tor you may want to set some of the following in your `torrc
<https://www.torproject.org/docs/faq.html.en#torrc>`_. Keep in mind that these
add a small burden to the network, so don't set them in a widely distributed
application. And, of course, please consider `running Tor as a relay
<https://community.torproject.org/relay/>`_ so you give back to
the network!

.. code-block:: lighttpd

  # Descriptors have a range of time during which they're valid. To get the
  # most recent descriptor information, regardless of if Tor needs it or not,
  # set the following.

  FetchDirInfoEarly 1
  FetchDirInfoExtraEarly 1

  # Tor doesn't need all descriptors to function. In particular...
  #
  #   * Tor no longer downloads server descriptors by default, opting
  #     for microdescriptors instead.
  #
  #   * If you aren't actively using Tor as a client then Tor will
  #     eventually stop downloading descriptor information altogether
  #     to relieve load on the network.
  #
  # To download descriptors regardless of if they're needed by the
  # Tor process or not set...

  FetchUselessDescriptors 1

  # Tor doesn't need extrainfo descriptors to work. If you want Tor to download
  # them anyway then set...

  DownloadExtraInfo 1

Now that Tor is happy chugging along, up-to-date descriptors are available
through Tor's control socket...

.. literalinclude:: /_static/example/descriptor_from_tor_control_socket.py
   :language: python

... or by reading directly from Tor's data directory...

.. literalinclude:: /_static/example/descriptor_from_tor_data_directory.py
   :language: python

.. _can-i-create-descriptors:

Can I create descriptors?
-------------------------

Besides reading descriptors you can create them too. This is most commonly done
for test data. To do so simply use the
:func:`~stem.descriptor.__init__.Descriptor.create` method of
:class:`~stem.descriptor.__init__.Descriptor` subclasses...

.. literalinclude:: /_static/example/create_descriptor.py
   :language: python

Unspecified mandatory fields are filled with mock data. You can also use
:func:`~stem.descriptor.__init__.Descriptor.content` to get a string
descriptor...

.. literalinclude:: /_static/example/create_descriptor_content.py
   :language: python

::

  router demo 127.0.0.1 80 0 0
  published 2012-03-01 17:15:27
  bandwidth 153600 256000 104590
  reject *:*
  onion-key
  -----BEGIN RSA PUBLIC KEY-----
  MIGJAoGBAJv5IIWQ+WDWYUdyA/0L8qbIkEVH/cwryZWoIaPAzINfrw1WfNZGtBmg
  skFtXhOHHqTRN4GPPrZsAIUOQGzQtGb66IQgT4tO/pj+P6QmSCCdTfhvGfgTCsC+
  WPi4Fl2qryzTb3QO5r5x7T8OsG2IBUET1bLQzmtbC560SYR49IvVAgMBAAE=
  -----END RSA PUBLIC KEY-----
  signing-key
  ...

.. _validating-the-descriptors-content:

Validating the descriptor's content
-----------------------------------

Stem can optionally validate descriptors, checking their integrity and
compliance with Tor's specs. This does the following...

* Checks that we have mandatory fields, and that their content conforms with
  what Tor's spec says they should have. This can be useful when data
  integrity is important to you since it provides an upfront assurance that
  the descriptor's correct (no need for 'None' checks).

* If you have **pycrypto** we'll validate signatures for descriptor types
  where that has been implemented (such as server and hidden service
  descriptors).

Prior to Stem 1.4.0 descriptors were validated by default, but this has become
opt-in since then.

General rule of thumb: if *speed* is your chief concern then leave it off, but
if *correctness* or *signature validation* is important then turn it on.
Validating is as simple as including **validate = True** in any method that
provides descriptors...

.. literalinclude:: /_static/example/validate_descriptor_content.py
   :language: python

.. _saving-and-loading-descriptors:

Saving and loading descriptors
------------------------------

Tor descriptors are just plaintext documents. As such, if you'd rather not use
`Pickle <https://wiki.python.org/moin/UsingPickle>`_ you can persist a
descriptor by simply writing it to disk, then reading it back later.

.. literalinclude:: /_static/example/saving_and_loading_descriptors.py
   :language: python

Our *server_descriptors* here is a list of
:class:`~stem.descriptor.server_descriptor.RelayDescriptor` instances. When we
write it to a file this looks like...

::

  router default 68.229.17.182 443 0 9030 
  platform Tor 0.2.4.23 on Windows XP
  protocols Link 1 2 Circuit 1
  published 2014-11-17 23:42:38
  fingerprint EE04 42C3 6DB6 6903 0816 247F 2607 382A 0783 2D5A
  uptime 63
  bandwidth 5242880 10485760 77824
  extra-info-digest 1ABA9FC6B912E755483D0F4F6E9BC1B23A2B7206
  ... etc...

We can then read it back with :func:`~stem.descriptor.__init__.parse_file`
by telling it the type of descriptors we're reading...

.. literalinclude:: /_static/example/read_with_parse_file.py
   :language: python

For an example of doing this with a consensus document `see here
<examples/persisting_a_consensus.html>`_.

.. _putting-it-together:

Putting it together...
----------------------

As discussed above there are four methods for reading descriptors...

* Download descriptors directly with `stem.descriptor.remote <../api/descriptor/remote.html>`_.
* Read a single file with :func:`~stem.descriptor.__init__.parse_file`.
* Read multiple files or an archive with the `DescriptorReader <../api/descriptor/reader.html>`_.
* Requesting them from Tor with :class:`~stem.control.Controller` methods like :func:`~stem.control.Controller.get_server_descriptors` and :func:`~stem.control.Controller.get_network_statuses`.

Now lets say you want to figure out who the *biggest* exit relays are. You
could use any of the methods above, but for this example we'll use
`stem.descriptor.remote <../api/descriptor/remote.html>`_...

.. literalinclude:: /_static/example/tor_descriptors.py
   :language: python

::

  % python example.py
  1. herngaard (40.95 MB/s)
  2. chaoscomputerclub19 (40.43 MB/s)
  3. chaoscomputerclub18 (40.02 MB/s)
  4. chaoscomputerclub20 (38.98 MB/s)
  5. wannabe (38.63 MB/s)
  6. dorrisdeebrown (38.48 MB/s)
  7. manning2 (38.20 MB/s)
  8. chaoscomputerclub21 (36.90 MB/s)
  9. TorLand1 (36.22 MB/s)
  10. bolobolo1 (35.93 MB/s)
  11. manning1 (35.39 MB/s)
  12. gorz (34.10 MB/s)
  13. ndnr1 (25.36 MB/s)
  14. politkovskaja2 (24.93 MB/s)
  15. wau (24.72 MB/s)

.. _are-there-any-other-parsing-libraries:

Are there any other parsing libraries?
--------------------------------------

Yup! Stem isn't the only game in town when it comes to parsing. `Metrics-lib
<https://metrics.torproject.org/metrics-lib.html>`_ is a highly mature parsing
library for Java, and `Zoossh
<https://gitweb.torproject.org/user/phw/zoossh.git/>`_ is available for Go.
Each library has its own capabilities...

.. role:: red
.. role:: green

=========================== ===================== =================== ==============
Capability                  Stem                  Metrics-lib         Zoossh
=========================== ===================== =================== ==============
Language                    :green:`Python`       :green:`Java`       :green:`Go`
Checks signatures           :green:`Mostly`       :red:`No`           :red:`No`
Create new descriptors      :green:`Yes`          :red:`No`           :red:`No`
Lazy parsing                :green:`Yes`          :red:`No`           :green:`Yes`
Type detection by @type     :green:`Yes`          :green:`Yes`        :green:`Yes`
Type detection by filename  :green:`Yes`          :red:`No`           :red:`No`
Packages                    :green:`Several`      :red:`None`         :red:`None`
**Can Read/Download From**
Files                       :green:`Yes`          :green:`Yes`        :green:`Yes`
Tarballs                    :green:`Yes`          :green:`Yes`        :red:`No`
Tor Process                 :green:`Yes`          :red:`No`           :red:`No`
Directory Authorities       :green:`Yes`          :green:`Yes`        :red:`No`
CollecTor                   :red:`No`             :green:`Yes`        :red:`No`
**Supported Types**
Server Descriptors          :green:`Yes`          :green:`Yes`        :green:`Partly`
Extrainfo Descriptors       :green:`Yes`          :green:`Yes`        :red:`No`
Microdescriptors            :green:`Yes`          :green:`Yes`        :red:`No`
Consensus                   :green:`Yes`          :green:`Yes`        :green:`Partly`
Bridge Descriptors          :green:`Yes`          :green:`Yes`        :red:`No`
Hidden Service Descriptors  :green:`Yes`          :red:`No`           :red:`No`
Bridge Pool Assignments     :red:`No`             :green:`Yes`        :red:`No`
Torperf                     :red:`No`             :green:`Yes`        :red:`No`
Tordnsel                    :green:`Yes`          :green:`Yes`        :red:`No`
**Benchmarks**
Server Descriptors          :green:`0.60 ms`      :green:`0.29 ms`    :green:`0.46 ms`
Extrainfo Descriptors       :green:`0.40 ms`      :green:`0.22 ms`    :red:`unsupported`
Microdescriptors            :green:`0.33 ms`      :green:`0.07 ms`    :red:`unsupported`
Consensus                   :green:`865.72 ms`    :green:`246.71 ms`  :green:`83.00 ms`
Benchmarked With Commit     :green:`c01a9cd`      :green:`8767f3e`    :green:`2380e55`
Language Interpreter        :green:`Python 3.5.1` :green:`Java 1.7.0` :green:`Go 1.5.2`
=========================== ===================== =================== ==============

Few things to note about these benchmarks...

* **Zoossh is the fastest.** Its benchmarks were at a disadvantage due to not
  reading from tarballs.

* Your Python version makes a very large difference for Stem. For instance,
  with Python 2.7 reading a consensus takes **1,290.84 ms** (almost twice as
  long).

* Metrics-lib and Stem can both read from compressed tarballs at a small
  performance cost. For instance, Metrics-lib can read an `lzma compressed
  <../faq.html#how-do-i-read-tar-xz-descriptor-archives>`_ consensus in
  **255.76 ms** and Stem can do it in **902.75 ms**.

So what does code with each of these look like?

Stem Example
------------

* `Benchmark Script <../.../../_static/example/benchmark_stem.py>`_

.. literalinclude:: /_static/example/benchmark_server_descriptor_stem.py
   :language: python

Metrics-lib Example
-------------------

* `Benchmark Script <../.../../_static/example/benchmark_metrics_lib.java>`_

.. literalinclude:: /_static/example/benchmark_server_descriptor_metrics_lib.java
   :language: java

Zoossh Example
--------------

* `Benchmark Script <../.../../_static/example/benchmark_zoossh.go>`_

.. literalinclude:: /_static/example/benchmark_server_descriptor_zoossh.go
   :language: go