1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
|
import asyncio
from collections import deque, defaultdict
from datetime import timedelta
import functools
import logging
import six
import sys
import threading
from time import time
from typing import Any, Callable, Hashable, Union
import weakref
import toolz
from tornado import gen
from tornado.locks import Condition
from tornado.ioloop import IOLoop
from tornado.queues import Queue
try:
from distributed.client import default_client as _dask_default_client
except ImportError: # pragma: no cover
_dask_default_client = None
from collections.abc import Iterable
from threading import get_ident as get_thread_identity
from .orderedweakset import OrderedWeakrefSet
no_default = '--no-default--'
_html_update_streams = set()
thread_state = threading.local()
logger = logging.getLogger(__name__)
_io_loops = []
def get_io_loop(asynchronous=None):
if asynchronous:
return IOLoop.current()
if _dask_default_client is not None:
try:
client = _dask_default_client()
except ValueError:
# No dask client found; continue
pass
else:
return client.loop
if not _io_loops:
loop = IOLoop()
thread = threading.Thread(target=loop.start)
thread.daemon = True
thread.start()
_io_loops.append(loop)
return _io_loops[-1]
def identity(x):
return x
class RefCounter:
""" A counter to track references to data
This class is used to track how many nodes in the DAG are referencing
a particular element in the pipeline. When the count reaches zero,
then parties interested in knowing if data is done being processed are
notified
Parameters
----------
initial: int, optional
The initial value of the reference counter
cb: callable
The function to use a callback when the reference count reaches zero
loop: tornado.ioloop.IOLoop
The loop on which to create a callback when the reference count
reaches zero
"""
def __init__(self, initial=0, cb=None, loop=None):
self.loop = loop if loop else get_io_loop()
self.count = initial
self.cb = cb
def retain(self, n=1):
"""Retain the reference
Parameters
----------
n: The number of times to retain the reference
"""
self.count += n
def release(self, n=1):
"""Release the reference
If the reference count is equal to or less than zero, the callback, if
provided will added to the provided loop or default loop
Parameters
----------
n: The number of references to release
"""
self.count -= n
if self.count <= 0 and self.cb:
self.loop.add_callback(self.cb)
def __str__(self):
return '<RefCounter count={}>'.format(self.count)
__repr__ = __str__
class APIRegisterMixin(object):
@classmethod
def register_api(cls, modifier=identity, attribute_name=None):
""" Add callable to Stream API
This allows you to register a new method onto this class. You can use
it as a decorator.::
>>> @Stream.register_api()
... class foo(Stream):
... ...
>>> Stream().foo(...) # this works now
It attaches the callable as a normal attribute to the class object. In
doing so it respects inheritance (all subclasses of Stream will also
get the foo attribute).
By default callables are assumed to be instance methods. If you like
you can include modifiers to apply before attaching to the class as in
the following case where we construct a ``staticmethod``.
>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...
>>> Stream.foo(...) # Foo operates as a static method
You can also provide an optional ``attribute_name`` argument to control
the name of the attribute your callable will be attached as.
>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...
>> Stream().bar(...) # foo was actually attached as bar
"""
def _(func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
return func(*args, **kwargs)
name = attribute_name if attribute_name else func.__name__
setattr(cls, name, modifier(wrapped))
return func
return _
@classmethod
def register_plugin_entry_point(cls, entry_point, modifier=identity):
if hasattr(cls, entry_point.name):
raise ValueError(
f"Can't add {entry_point.name} from {entry_point.module_name} "
f"to {cls.__name__}: duplicate method name."
)
def stub(*args, **kwargs):
""" Entrypoints-based streamz plugin. Will be loaded on first call. """
node = entry_point.load()
if not issubclass(node, Stream):
raise TypeError(
f"Error loading {entry_point.name} "
f"from module {entry_point.module_name}: "
f"{node.__class__.__name__} must be a subclass of Stream"
)
if getattr(cls, entry_point.name).__name__ == "stub":
cls.register_api(
modifier=modifier, attribute_name=entry_point.name
)(node)
return node(*args, **kwargs)
cls.register_api(modifier=modifier, attribute_name=entry_point.name)(stub)
class Stream(APIRegisterMixin):
""" A Stream is an infinite sequence of data.
Streams subscribe to each other passing and transforming data between them.
A Stream object listens for updates from upstream, reacts to these updates,
and then emits more data to flow downstream to all Stream objects that
subscribe to it. Downstream Stream objects may connect at any point of a
Stream graph to get a full view of the data coming off of that point to do
with as they will.
Parameters
----------
stream_name: str or None
This is the name of the stream.
asynchronous: boolean or None
Whether or not this stream will be used in asynchronous functions or
normal Python functions. Leave as None if you don't know.
True will cause operations like emit to return awaitable Futures
False will use an Event loop in another thread (starts it if necessary)
ensure_io_loop: boolean
Ensure that some IOLoop will be created. If asynchronous is None or
False then this will be in a separate thread, otherwise it will be
IOLoop.current
Examples
--------
>>> def inc(x):
... return x + 1
>>> source = Stream() # Create a stream object
>>> s = source.map(inc).map(str) # Subscribe to make new streams
>>> s.sink(print) # take an action whenever an element reaches the end
>>> L = list()
>>> s.sink(L.append) # or take multiple actions (streams can branch)
>>> for i in range(5):
... source.emit(i) # push data in at the source
'1'
'2'
'3'
'4'
'5'
>>> L # and the actions happen at the sinks
['1', '2', '3', '4', '5']
"""
_graphviz_shape = 'ellipse'
_graphviz_style = 'rounded,filled'
_graphviz_fillcolor = 'white'
_graphviz_orientation = 0
str_list = ['func', 'predicate', 'n', 'interval']
def __init__(self, upstream=None, upstreams=None, stream_name=None,
loop=None, asynchronous=None, ensure_io_loop=False):
self.name = stream_name
self.downstreams = OrderedWeakrefSet()
self.current_value = None
self.current_metadata = None
if upstreams is not None:
self.upstreams = list(upstreams)
elif upstream is not None:
self.upstreams = [upstream]
else:
self.upstreams = []
self._set_asynchronous(asynchronous)
self._set_loop(loop)
if ensure_io_loop and not self.loop:
self._set_asynchronous(False)
if self.loop is None and self.asynchronous is not None:
self._set_loop(get_io_loop(self.asynchronous))
for upstream in self.upstreams:
if upstream:
upstream.downstreams.add(self)
def _set_loop(self, loop):
self.loop = None
if loop is not None:
self._inform_loop(loop)
else:
for upstream in self.upstreams:
if upstream and upstream.loop:
self.loop = upstream.loop
break
def _inform_loop(self, loop):
"""
Percolate information about an event loop to the rest of the stream
"""
if self.loop is not None:
if self.loop is not loop:
raise ValueError("Two different event loops active")
else:
self.loop = loop
for upstream in self.upstreams:
if upstream:
upstream._inform_loop(loop)
for downstream in self.downstreams:
if downstream:
downstream._inform_loop(loop)
def _set_asynchronous(self, asynchronous):
self.asynchronous = None
if asynchronous is not None:
self._inform_asynchronous(asynchronous)
else:
for upstream in self.upstreams:
if upstream and upstream.asynchronous:
self.asynchronous = upstream.asynchronous
break
def _inform_asynchronous(self, asynchronous):
"""
Percolate information about an event loop to the rest of the stream
"""
if self.asynchronous is not None:
if self.asynchronous is not asynchronous:
raise ValueError("Stream has both asynchronous and synchronous elements")
else:
self.asynchronous = asynchronous
for upstream in self.upstreams:
if upstream:
upstream._inform_asynchronous(asynchronous)
for downstream in self.downstreams:
if downstream:
downstream._inform_asynchronous(asynchronous)
def _add_upstream(self, upstream):
"""Add upstream to current upstreams, this method is overridden for
classes which handle stream specific buffers/caches"""
self.upstreams.append(upstream)
def _add_downstream(self, downstream):
"""Add downstream to current downstreams"""
self.downstreams.add(downstream)
def _remove_downstream(self, downstream):
"""Remove downstream from current downstreams"""
self.downstreams.remove(downstream)
def _remove_upstream(self, upstream):
"""Remove upstream from current upstreams, this method is overridden for
classes which handle stream specific buffers/caches"""
self.upstreams.remove(upstream)
def start(self):
""" Start any upstream sources """
for upstream in self.upstreams:
upstream.start()
def stop(self):
""" Stop upstream sources """
for upstream in self.upstreams:
upstream.stop()
def __str__(self):
s_list = []
if self.name:
s_list.append('{}; {}'.format(self.name, self.__class__.__name__))
else:
s_list.append(self.__class__.__name__)
for m in self.str_list:
s = ''
at = getattr(self, m, None)
if at:
if not callable(at):
s = str(at)
elif hasattr(at, '__name__'):
s = getattr(self, m).__name__
else:
s = None
if s:
s_list.append('{}={}'.format(m, s))
if len(s_list) <= 2:
s_list = [term.split('=')[-1] for term in s_list]
text = "<"
text += s_list[0]
if len(s_list) > 1:
text += ': '
text += ', '.join(s_list[1:])
text += '>'
return text
__repr__ = __str__
def _ipython_display_(self, **kwargs): # pragma: no cover
try:
import ipywidgets
from IPython.core.interactiveshell import InteractiveShell
output = ipywidgets.Output(_view_count=0)
except ImportError:
# since this function is only called by jupyter, this import must succeed
from IPython.display import display, HTML
if hasattr(self, '_repr_html_'):
return display(HTML(self._repr_html_()))
else:
return display(self.__repr__())
output_ref = weakref.ref(output)
def update_cell(val):
output = output_ref()
if output is None:
return
with output:
content, *_ = InteractiveShell.instance().display_formatter.format(val)
output.outputs = ({'output_type': 'display_data',
'data': content,
'metadata': {}},)
s = self.map(update_cell)
_html_update_streams.add(s)
self.output_ref = output_ref
s_ref = weakref.ref(s)
def remove_stream(change):
output = output_ref()
if output is None:
return
if output._view_count == 0:
ss = s_ref()
ss.destroy()
_html_update_streams.remove(ss) # trigger gc
output.observe(remove_stream, '_view_count')
return output._ipython_display_(**kwargs)
def _emit(self, x, metadata=None):
"""
Push data into the stream at this point
Parameters
----------
x: any
an element of data
metadata: list[dict], optional
Various types of metadata associated with the data element in `x`.
ref: RefCounter
A reference counter used to check when data is done
"""
self.current_value = x
self.current_metadata = metadata
if metadata:
self._retain_refs(metadata, len(self.downstreams))
else:
metadata = []
result = []
for downstream in list(self.downstreams):
r = downstream.update(x, who=self, metadata=metadata)
if type(r) is list:
result.extend(r)
else:
result.append(r)
self._release_refs(metadata)
return [element for element in result if element is not None]
def emit(self, x, asynchronous=False, metadata=None):
""" Push data into the stream at this point
This is typically done only at source Streams but can theoretically be
done at any point
Parameters
----------
x: any
an element of data
asynchronous:
emit asynchronously
metadata: list[dict], optional
Various types of metadata associated with the data element in `x`.
ref: RefCounter
A reference counter used to check when data is done
"""
ts_async = getattr(thread_state, 'asynchronous', False)
if self.loop is None or asynchronous or self.asynchronous or ts_async:
if not ts_async:
thread_state.asynchronous = True
try:
result = self._emit(x, metadata=metadata)
if self.loop:
return gen.convert_yielded(result)
finally:
thread_state.asynchronous = ts_async
else:
async def _():
thread_state.asynchronous = True
try:
result = await asyncio.gather(*self._emit(x, metadata=metadata))
finally:
del thread_state.asynchronous
return result
sync(self.loop, _)
def update(self, x, who=None, metadata=None):
return self._emit(x, metadata=metadata)
def gather(self):
""" This is a no-op for core streamz
This allows gather to be used in both dask and core streams
"""
return self
def connect(self, downstream):
""" Connect this stream to a downstream element.
Parameters
----------
downstream: Stream
The downstream stream to connect to
"""
self._add_downstream(downstream)
downstream._add_upstream(self)
def disconnect(self, downstream):
""" Disconnect this stream to a downstream element.
Parameters
----------
downstream: Stream
The downstream stream to disconnect from
"""
self._remove_downstream(downstream)
downstream._remove_upstream(self)
@property
def upstream(self):
if len(self.upstreams) > 1:
raise ValueError("Stream has multiple upstreams")
elif len(self.upstreams) == 0:
return None
else:
return self.upstreams[0]
def destroy(self, streams=None):
"""
Disconnect this stream from any upstream sources
"""
if streams is None:
streams = self.upstreams
for upstream in list(streams):
upstream._remove_downstream(self)
self._remove_upstream(upstream)
def scatter(self, **kwargs):
from .dask import scatter
return scatter(self, **kwargs)
def remove(self, predicate):
""" Only pass through elements for which the predicate returns False """
return self.filter(lambda x: not predicate(x))
@property
def scan(self):
return self.accumulate
@property
def concat(self):
return self.flatten
def sink_to_list(self):
""" Append all elements of a stream to a list as they come in
Examples
--------
>>> source = Stream()
>>> L = source.map(lambda x: 10 * x).sink_to_list()
>>> for i in range(5):
... source.emit(i)
>>> L
[0, 10, 20, 30, 40]
"""
L = []
self.sink(L.append)
return L
def frequencies(self, **kwargs):
""" Count occurrences of elements """
def update_frequencies(last, x):
return toolz.assoc(last, x, last.get(x, 0) + 1)
return self.scan(update_frequencies, start={}, **kwargs)
def visualize(self, filename='mystream.png', **kwargs):
"""Render the computation of this object's task graph using graphviz.
Requires ``graphviz`` and ``networkx`` to be installed.
Parameters
----------
filename : str, optional
The name of the file to write to disk.
kwargs:
Graph attributes to pass to graphviz like ``rankdir="LR"``
"""
from .graph import visualize
return visualize(self, filename, **kwargs)
def to_dataframe(self, example):
""" Convert a stream of Pandas dataframes to a DataFrame
Examples
--------
>>> source = Stream()
>>> sdf = source.to_dataframe()
>>> L = sdf.groupby(sdf.x).y.mean().stream.sink_to_list()
>>> source.emit(pd.DataFrame(...)) # doctest: +SKIP
>>> source.emit(pd.DataFrame(...)) # doctest: +SKIP
>>> source.emit(pd.DataFrame(...)) # doctest: +SKIP
"""
from .dataframe import DataFrame
return DataFrame(stream=self, example=example)
def to_batch(self, **kwargs):
""" Convert a stream of lists to a Batch
All elements of the stream are assumed to be lists or tuples
Examples
--------
>>> source = Stream()
>>> batches = source.to_batch()
>>> L = batches.pluck('value').map(inc).sum().stream.sink_to_list()
>>> source.emit([{'name': 'Alice', 'value': 1},
... {'name': 'Bob', 'value': 2},
... {'name': 'Charlie', 'value': 3}])
>>> source.emit([{'name': 'Alice', 'value': 4},
... {'name': 'Bob', 'value': 5},
... {'name': 'Charlie', 'value': 6}])
"""
from .batch import Batch
return Batch(stream=self, **kwargs)
def _retain_refs(self, metadata, n=1):
""" Retain all references in the provided metadata `n` number of times
Parameters
----------
metadata: list[dict], optional
Various types of metadata associated with the data element in `x`.
ref: RefCounter
A reference counter used to check when data is done
n: The number of times to retain the provided references
"""
for m in metadata:
if 'ref' in m:
m['ref'].retain(n)
def _release_refs(self, metadata, n=1):
""" Release all references in the provided metadata `n` number of times
Parameters
----------
metadata: list[dict], optional
Various types of metadata associated with the data element in `x`.
ref: RefCounter
A reference counter used to check when data is done
n: The number of times to retain the provided references
"""
for m in metadata:
if 'ref' in m:
m['ref'].release(n)
@Stream.register_api()
class map(Stream):
""" Apply a function to every element in the stream
Parameters
----------
func: callable
*args :
The arguments to pass to the function.
**kwargs:
Keyword arguments to pass to func
Examples
--------
>>> source = Stream()
>>> source.map(lambda x: 2*x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4
6
8
"""
def __init__(self, upstream, func, *args, **kwargs):
self.func = func
# this is one of a few stream specific kwargs
stream_name = kwargs.pop('stream_name', None)
self.kwargs = kwargs
self.args = args
Stream.__init__(self, upstream, stream_name=stream_name)
def update(self, x, who=None, metadata=None):
try:
result = self.func(x, *self.args, **self.kwargs)
except Exception as e:
logger.exception(e)
raise
else:
return self._emit(result, metadata=metadata)
@Stream.register_api()
class starmap(Stream):
""" Apply a function to every element in the stream, splayed out
See ``itertools.starmap``
Parameters
----------
func: callable
*args :
The arguments to pass to the function.
**kwargs:
Keyword arguments to pass to func
Examples
--------
>>> source = Stream()
>>> source.starmap(lambda a, b: a + b).sink(print)
>>> for i in range(5):
... source.emit((i, i))
0
2
4
6
8
"""
def __init__(self, upstream, func, *args, **kwargs):
self.func = func
# this is one of a few stream specific kwargs
stream_name = kwargs.pop('stream_name', None)
self.kwargs = kwargs
self.args = args
Stream.__init__(self, upstream, stream_name=stream_name)
def update(self, x, who=None, metadata=None):
y = x + self.args
try:
result = self.func(*y, **self.kwargs)
except Exception as e:
logger.exception(e)
raise
else:
return self._emit(result, metadata=metadata)
def _truthy(x):
return not not x
@Stream.register_api()
class filter(Stream):
""" Only pass through elements that satisfy the predicate
Parameters
----------
predicate : function
The predicate. Should return True or False, where
True means that the predicate is satisfied.
*args :
The arguments to pass to the predicate.
**kwargs:
Keyword arguments to pass to predicate
Examples
--------
>>> source = Stream()
>>> source.filter(lambda x: x % 2 == 0).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4
"""
def __init__(self, upstream, predicate, *args, **kwargs):
if predicate is None:
predicate = _truthy
self.predicate = predicate
stream_name = kwargs.pop("stream_name", None)
self.kwargs = kwargs
self.args = args
Stream.__init__(self, upstream, stream_name=stream_name)
def update(self, x, who=None, metadata=None):
if self.predicate(x, *self.args, **self.kwargs):
return self._emit(x, metadata=metadata)
@Stream.register_api()
class accumulate(Stream):
""" Accumulate results with previous state
This performs running or cumulative reductions, applying the function
to the previous total and the new element. The function should take
two arguments, the previous accumulated state and the next element and
it should return a new accumulated state,
- ``state = func(previous_state, new_value)`` (returns_state=False)
- ``state, result = func(previous_state, new_value)`` (returns_state=True)
where the new_state is passed to the next invocation. The state or result
is emitted downstream for the two cases.
Parameters
----------
func: callable
start: object
Initial value, passed as the value of ``previous_state`` on the first
invocation. Defaults to the first submitted element
returns_state: boolean
If true then func should return both the state and the value to emit
If false then both values are the same, and func returns one value
**kwargs:
Keyword arguments to pass to func
Examples
--------
A running total, producing triangular numbers
>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
1
3
6
10
A count of number of events (including the current one)
>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + 1, start=0).sink(print)
>>> for _ in range(5):
... source.emit(0)
1
2
3
4
5
Like the builtin "enumerate".
>>> source = Stream()
>>> source.accumulate(lambda acc, x: ((acc[0] + 1, x), (acc[0], x)),
... start=(0, 0), returns_state=True
... ).sink(print)
>>> for i in range(3):
... source.emit(0)
(0, 0)
(1, 0)
(2, 0)
"""
_graphviz_shape = 'box'
def __init__(self, upstream, func, start=no_default, returns_state=False,
**kwargs):
self.func = func
self.kwargs = kwargs
self.state = start
self.returns_state = returns_state
# this is one of a few stream specific kwargs
stream_name = kwargs.pop('stream_name', None)
self.with_state = kwargs.pop('with_state', False)
Stream.__init__(self, upstream, stream_name=stream_name)
def update(self, x, who=None, metadata=None):
if self.state is no_default:
self.state = x
if self.with_state:
return self._emit((self.state, x), metadata=metadata)
else:
return self._emit(x, metadata=metadata)
else:
try:
result = self.func(self.state, x, **self.kwargs)
except Exception as e:
logger.exception(e)
raise
if self.returns_state:
state, result = result
else:
state = result
self.state = state
if self.with_state:
return self._emit((self.state, result), metadata=metadata)
else:
return self._emit(result, metadata=metadata)
@Stream.register_api()
class slice(Stream):
"""
Get only some events in a stream by position. Works like list[] syntax.
Parameters
----------
start : int
First event to use. If None, start from the beginnning
end : int
Last event to use (non-inclusive). If None, continue without stopping.
Does not support negative indexing.
step : int
Pass on every Nth event. If None, pass every one.
Examples
--------
>>> source = Stream()
>>> source.slice(2, 6, 2).sink(print)
>>> for i in range(5):
... source.emit(0)
2
4
"""
def __init__(self, upstream, start=None, end=None, step=None, **kwargs):
self.state = 0
self.star = start or 0
self.end = end
self.step = step or 1
if any((_ or 0) < 0 for _ in [start, end, step]):
raise ValueError("Negative indices not supported by slice")
stream_name = kwargs.pop('stream_name', None)
Stream.__init__(self, upstream, stream_name=stream_name)
self._check_end()
def update(self, x, who=None, metadata=None):
if self.state >= self.star and self.state % self.step == 0:
self.emit(x, metadata=metadata)
self.state += 1
self._check_end()
def _check_end(self):
if self.end and self.state >= self.end:
# we're done
for upstream in self.upstreams:
upstream._remove_downstream(self)
@Stream.register_api()
class partition(Stream):
""" Partition stream into tuples of equal size
Parameters
----------
n: int
Maximum partition size
timeout: int or float, optional
Number of seconds after which a partition will be emitted,
even if its size is less than ``n``. If ``None`` (default),
a partition will be emitted only when its size reaches ``n``.
key: hashable or callable, optional
Emit items with the same key together as a separate partition.
If ``key`` is callable, partition will be identified by ``key(x)``,
otherwise by ``x[key]``. Defaults to ``None``.
Examples
--------
>>> source = Stream()
>>> source.partition(3).sink(print)
>>> for i in range(10):
... source.emit(i)
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
>>> source = Stream()
>>> source.partition(2, key=lambda x: x % 2).sink(print)
>>> for i in range(4):
... source.emit(i)
(0, 2)
(1, 3)
>>> from time import sleep
>>> source = Stream()
>>> source.partition(5, timeout=1).sink(print)
>>> for i in range(3):
... source.emit(i)
>>> sleep(1)
(0, 1, 2)
"""
_graphviz_shape = 'diamond'
def __init__(self, upstream, n, timeout=None, key=None, **kwargs):
self.n = n
self._timeout = timeout
self._key = key
self._buffer = defaultdict(lambda: [])
self._metadata_buffer = defaultdict(lambda: [])
self._callbacks = {}
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
def _get_key(self, x):
if self._key is None:
return None
if callable(self._key):
return self._key(x)
return x[self._key]
@gen.coroutine
def _flush(self, key):
result, self._buffer[key] = self._buffer[key], []
metadata_result, self._metadata_buffer[key] = self._metadata_buffer[key], []
yield self._emit(tuple(result), list(metadata_result))
self._release_refs(metadata_result)
@gen.coroutine
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
key = self._get_key(x)
buffer = self._buffer[key]
metadata_buffer = self._metadata_buffer[key]
buffer.append(x)
if isinstance(metadata, list):
metadata_buffer.extend(metadata)
else:
metadata_buffer.append(metadata)
if len(buffer) == self.n:
if self._timeout is not None and self.n > 1:
self._callbacks[key].cancel()
yield self._flush(key)
return
if len(buffer) == 1 and self._timeout is not None:
self._callbacks[key] = self.loop.call_later(
self._timeout, self._flush, key
)
@Stream.register_api()
class partition_unique(Stream):
"""
Partition stream elements into groups of equal size with unique keys only.
Parameters
----------
n: int
Number of (unique) elements to pass through as a group.
key: Union[Hashable, Callable[[Any], Hashable]]
Callable that accepts a stream element and returns a unique, hashable
representation of the incoming data (``key(x)``), or a hashable that gets
the corresponding value of a stream element (``x[key]``). For example,
``key=lambda x: x["a"]`` would allow only elements with unique ``"a"`` values
to pass through.
.. note:: By default, we simply use the element object itself as the key,
so that object must be hashable. If that's not the case, a non-default
key must be provided.
keep: str
Which element to keep in the case that a unique key is already found
in the group. If "first", keep element from the first occurrence of a given
key; if "last", keep element from the most recent occurrence. Note that
relative ordering of *elements* is preserved in the data passed through,
and not ordering of *keys*.
**kwargs
Examples
--------
>>> source = Stream()
>>> stream = source.partition_unique(n=3, keep="first").sink(print)
>>> eles = [1, 2, 1, 3, 1, 3, 3, 2]
>>> for ele in eles:
... source.emit(ele)
(1, 2, 3)
(1, 3, 2)
>>> source = Stream()
>>> stream = source.partition_unique(n=3, keep="last").sink(print)
>>> eles = [1, 2, 1, 3, 1, 3, 3, 2]
>>> for ele in eles:
... source.emit(ele)
(2, 1, 3)
(1, 3, 2)
>>> source = Stream()
>>> stream = source.partition_unique(n=3, key=lambda x: len(x), keep="last").sink(print)
>>> eles = ["f", "fo", "f", "foo", "f", "foo", "foo", "fo"]
>>> for ele in eles:
... source.emit(ele)
('fo', 'f', 'foo')
('f', 'foo', 'fo')
"""
_graphviz_shape = "diamond"
def __init__(
self,
upstream,
n: int,
key: Union[Hashable, Callable[[Any], Hashable]] = identity,
keep: str = "first", # Literal["first", "last"]
**kwargs
):
self.n = n
self.key = key
self.keep = keep
self._buffer = {}
self._metadata_buffer = {}
Stream.__init__(self, upstream, **kwargs)
def _get_key(self, x):
if callable(self.key):
return self.key(x)
else:
return x[self.key]
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
y = self._get_key(x)
if self.keep == "last":
# remove key if already present so that emitted value
# will reflect elements' actual relative ordering
self._buffer.pop(y, None)
self._metadata_buffer.pop(y, None)
self._buffer[y] = x
self._metadata_buffer[y] = metadata
else: # self.keep == "first"
if y not in self._buffer:
self._buffer[y] = x
self._metadata_buffer[y] = metadata
if len(self._buffer) == self.n:
result, self._buffer = tuple(self._buffer.values()), {}
metadata_result, self._metadata_buffer = list(self._metadata_buffer.values()), {}
ret = self._emit(result, metadata_result)
self._release_refs(metadata_result)
return ret
else:
return []
@Stream.register_api()
class sliding_window(Stream):
""" Produce overlapping tuples of size n
Parameters
----------
return_partial : bool
If True, yield tuples as soon as any events come in, each tuple being
smaller or equal to the window size. If False, only start yielding
tuples once a full window has accrued.
Examples
--------
>>> source = Stream()
>>> source.sliding_window(3, return_partial=False).sink(print)
>>> for i in range(8):
... source.emit(i)
(0, 1, 2)
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(4, 5, 6)
(5, 6, 7)
"""
_graphviz_shape = 'diamond'
def __init__(self, upstream, n, return_partial=True, **kwargs):
self.n = n
self._buffer = deque(maxlen=n)
self.metadata_buffer = deque(maxlen=n)
self.partial = return_partial
Stream.__init__(self, upstream, **kwargs)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
self._buffer.append(x)
if not isinstance(metadata, list):
metadata = [metadata]
self.metadata_buffer.append(metadata)
if self.partial or len(self._buffer) == self.n:
flat_metadata = [m for ml in self.metadata_buffer for m in ml]
ret = self._emit(tuple(self._buffer), flat_metadata)
if len(self.metadata_buffer) == self.n:
completed = self.metadata_buffer.popleft()
self._release_refs(completed)
return ret
else:
return []
def convert_interval(interval):
if isinstance(interval, str):
import pandas as pd
interval = pd.Timedelta(interval).total_seconds()
return interval
@Stream.register_api()
class timed_window(Stream):
""" Emit a tuple of collected results every interval
Every ``interval`` seconds this emits a tuple of all of the results
seen so far. This can help to batch data coming off of a high-volume
stream.
"""
_graphviz_shape = 'octagon'
def __init__(self, upstream, interval, **kwargs):
self.interval = convert_interval(interval)
self._buffer = []
self.metadata_buffer = []
self.last = gen.moment
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
self.loop.add_callback(self.cb)
def update(self, x, who=None, metadata=None):
self._buffer.append(x)
self._retain_refs(metadata)
self.metadata_buffer.append(metadata)
return self.last
@gen.coroutine
def cb(self):
while True:
L, self._buffer = self._buffer, []
metadata, self.metadata_buffer = self.metadata_buffer, []
m = [m for ml in metadata for m in ml]
self.last = self._emit(L, m)
self._release_refs(m)
yield self.last
yield gen.sleep(self.interval)
@Stream.register_api()
class timed_window_unique(Stream):
"""
Emit a group of elements with unique keys every ``interval`` seconds.
Parameters
----------
interval: Union[int, str]
Number of seconds over which to group elements, or a ``pandas``-style
duration string that can be converted into seconds.
key: Union[Hashable, Callable[[Any], Hashable]]
Callable that accepts a stream element and returns a unique, hashable
representation of the incoming data (``key(x)``), or a hashable that gets
the corresponding value of a stream element (``x[key]``). For example, both
``key=lambda x: x["a"]`` and ``key="a"`` would allow only elements with unique
``"a"`` values to pass through.
.. note:: By default, we simply use the element object itself as the key,
so that object must be hashable. If that's not the case, a non-default
key must be provided.
keep: str
Which element to keep in the case that a unique key is already found
in the group. If "first", keep element from the first occurrence of a given
key; if "last", keep element from the most recent occurrence. Note that
relative ordering of *elements* is preserved in the data passed through,
and not ordering of *keys*.
Examples
--------
>>> source = Stream()
Get unique hashable elements in a window, keeping just the first occurrence:
>>> stream = source.timed_window_unique(interval=1.0, keep="first").sink(print)
>>> for ele in [1, 2, 3, 3, 2, 1]:
... source.emit(ele)
()
(1, 2, 3)
()
Get unique hashable elements in a window, keeping just the last occurrence:
>>> stream = source.timed_window_unique(interval=1.0, keep="last").sink(print)
>>> for ele in [1, 2, 3, 3, 2, 1]:
... source.emit(ele)
()
(3, 2, 1)
()
Get unique elements in a window by (string) length, keeping just the first occurrence:
>>> stream = source.timed_window_unique(interval=1.0, key=len, keep="first")
>>> for ele in ["f", "b", "fo", "ba", "foo", "bar"]:
... source.emit(ele)
()
('f', 'fo', 'foo')
()
Get unique elements in a window by (string) length, keeping just the last occurrence:
>>> stream = source.timed_window_unique(interval=1.0, key=len, keep="last")
>>> for ele in ["f", "b", "fo", "ba", "foo", "bar"]:
... source.emit(ele)
()
('b', 'ba', 'bar')
()
"""
_graphviz_shape = "octagon"
def __init__(
self,
upstream,
interval: Union[int, str],
key: Union[Hashable, Callable[[Any], Hashable]] = identity,
keep: str = "first", # Literal["first", "last"]
**kwargs
):
self.interval = convert_interval(interval)
self.key = key
self.keep = keep
self._buffer = {}
self._metadata_buffer = {}
self.last = gen.moment
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
self.loop.add_callback(self.cb)
def _get_key(self, x):
if callable(self.key):
return self.key(x)
else:
return x[self.key]
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
y = self._get_key(x)
if self.keep == "last":
# remove key if already present so that emitted value
# will reflect elements' actual relative ordering
self._buffer.pop(y, None)
self._metadata_buffer.pop(y, None)
self._buffer[y] = x
self._metadata_buffer[y] = metadata
else: # self.keep == "first"
if y not in self._buffer:
self._buffer[y] = x
self._metadata_buffer[y] = metadata
return self.last
@gen.coroutine
def cb(self):
while True:
result, self._buffer = tuple(self._buffer.values()), {}
metadata_result, self._metadata_buffer = list(self._metadata_buffer.values()), {}
# TODO: figure out why metadata_result is handled differently here...
m = [m for ml in metadata_result for m in ml]
self.last = self._emit(result, m)
self._release_refs(m)
yield self.last
yield gen.sleep(self.interval)
@Stream.register_api()
class delay(Stream):
""" Add a time delay to results """
_graphviz_shape = 'octagon'
def __init__(self, upstream, interval, **kwargs):
self.interval = convert_interval(interval)
self.queue = Queue()
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream,**kwargs)
self.loop.add_callback(self.cb)
@gen.coroutine
def cb(self):
while True:
last = time()
x, metadata = yield self.queue.get()
yield self._emit(x, metadata=metadata)
self._release_refs(metadata)
duration = self.interval - (time() - last)
if duration > 0:
yield gen.sleep(duration)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
return self.queue.put((x, metadata))
@Stream.register_api()
class rate_limit(Stream):
""" Limit the flow of data
This stops two elements of streaming through in an interval shorter
than the provided value.
Parameters
----------
interval: float
Time in seconds
"""
_graphviz_shape = 'octagon'
def __init__(self, upstream, interval, **kwargs):
self.interval = convert_interval(interval)
self.next = 0
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
@gen.coroutine
def update(self, x, who=None, metadata=None):
now = time()
old_next = self.next
self.next = max(now, self.next) + self.interval
if now < old_next:
yield gen.sleep(old_next - now)
yield self._emit(x, metadata=metadata)
@Stream.register_api()
class buffer(Stream):
""" Allow results to pile up at this point in the stream
This allows results to buffer in place at various points in the stream.
This can help to smooth flow through the system when backpressure is
applied.
"""
_graphviz_shape = 'diamond'
def __init__(self, upstream, n, **kwargs):
self.queue = Queue(maxsize=n)
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
self.loop.add_callback(self.cb)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
return self.queue.put((x, metadata))
@gen.coroutine
def cb(self):
while True:
x, metadata = yield self.queue.get()
yield self._emit(x, metadata=metadata)
self._release_refs(metadata)
@Stream.register_api()
class zip(Stream):
""" Combine streams together into a stream of tuples
We emit a new tuple once all streams have produce a new tuple.
See also
--------
combine_latest
zip_latest
"""
_graphviz_orientation = 270
_graphviz_shape = 'triangle'
def __init__(self, *upstreams, **kwargs):
self.maxsize = kwargs.pop('maxsize', 10)
self.condition = Condition()
self.literals = [(i, val) for i, val in enumerate(upstreams)
if not isinstance(val, Stream)]
self.buffers = {upstream: deque()
for upstream in upstreams
if isinstance(upstream, Stream)}
upstreams2 = [upstream for upstream in upstreams if isinstance(upstream, Stream)]
Stream.__init__(self, upstreams=upstreams2, **kwargs)
def _add_upstream(self, upstream):
# Override method to handle setup of buffer for new stream
self.buffers[upstream] = deque()
super(zip, self)._add_upstream(upstream)
def _remove_upstream(self, upstream):
# Override method to handle removal of buffer for stream
self.buffers.pop(upstream)
super(zip, self)._remove_upstream(upstream)
def pack_literals(self, tup):
""" Fill buffers for literals whenever we empty them """
inp = list(tup)[::-1]
out = []
for i, val in self.literals:
while len(out) < i:
out.append(inp.pop())
out.append(val)
while inp:
out.append(inp.pop())
return tuple(out)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
L = self.buffers[who] # get buffer for stream
L.append((x, metadata))
if len(L) == 1 and all(self.buffers.values()):
vals = [self.buffers[up][0] for up in self.upstreams]
tup, md = __builtins__['zip'](*vals)
for buf in self.buffers.values():
buf.popleft()
self.condition.notify_all()
if self.literals:
tup = self.pack_literals(tup)
md = [m for ml in md for m in ml]
ret = self._emit(tup, md)
self._release_refs(md)
return ret
elif len(L) > self.maxsize:
return self.condition.wait()
@Stream.register_api()
class combine_latest(Stream):
""" Combine multiple streams together to a stream of tuples
This will emit a new tuple of all of the most recent elements seen from
any stream.
Parameters
----------
emit_on : stream or list of streams or None
only emit upon update of the streams listed.
If None, emit on update from any stream
See Also
--------
zip
"""
_graphviz_orientation = 270
_graphviz_shape = 'triangle'
def __init__(self, *upstreams, **kwargs):
emit_on = kwargs.pop('emit_on', None)
self._initial_emit_on = emit_on
self.last = [None for _ in upstreams]
self.metadata = [None for _ in upstreams]
self.missing = set(upstreams)
if emit_on is not None:
if not isinstance(emit_on, Iterable):
emit_on = (emit_on, )
emit_on = tuple(
upstreams[x] if isinstance(x, int) else x for x in emit_on)
self.emit_on = emit_on
else:
self.emit_on = upstreams
Stream.__init__(self, upstreams=upstreams, **kwargs)
def _add_upstream(self, upstream):
# Override method to handle setup of last and missing for new stream
self.last.append(None)
self.metadata.append(None)
self.missing.update([upstream])
super(combine_latest, self)._add_upstream(upstream)
if self._initial_emit_on is None:
self.emit_on = self.upstreams
def _remove_upstream(self, upstream):
# Override method to handle removal of last and missing for stream
if self.emit_on == upstream:
raise RuntimeError("Can't remove the ``emit_on`` stream since that"
"would cause no data to be emitted. "
"Consider adding an ``emit_on`` first by "
"running ``node.emit_on=(upstream,)`` to add "
"a new ``emit_on`` or running "
"``node.emit_on=tuple(node.upstreams)`` to "
"emit on all incoming data")
self.last.pop(self.upstreams.index(upstream))
self.metadata.pop(self.upstreams.index(upstream))
self.missing.remove(upstream)
super(combine_latest, self)._remove_upstream(upstream)
if self._initial_emit_on is None:
self.emit_on = self.upstreams
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
idx = self.upstreams.index(who)
if self.metadata[idx]:
self._release_refs(self.metadata[idx])
self.metadata[idx] = metadata
if self.missing and who in self.missing:
self.missing.remove(who)
self.last[idx] = x
if not self.missing and who in self.emit_on:
tup = tuple(self.last)
md = [m for ml in self.metadata for m in ml]
return self._emit(tup, md)
@Stream.register_api()
class flatten(Stream):
""" Flatten streams of lists or iterables into a stream of elements
Examples
--------
>>> source = Stream()
>>> source.flatten().sink(print)
>>> for x in [[1, 2, 3], [4, 5], [6, 7, 7]]:
... source.emit(x)
1
2
3
4
5
6
7
See Also
--------
partition
"""
def update(self, x, who=None, metadata=None):
L = []
for i, item in enumerate(x):
if i == len(x) - 1:
y = self._emit(item, metadata=metadata)
else:
y = self._emit(item)
if type(y) is list:
L.extend(y)
else:
L.append(y)
return L
@Stream.register_api()
class unique(Stream):
""" Avoid sending through repeated elements
This deduplicates a stream so that only new elements pass through.
You can control how much of a history is stored with the ``maxsize=``
parameter. For example setting ``maxsize=1`` avoids sending through
elements when one is repeated right after the other.
Parameters
----------
maxsize: int or None, optional
number of stored unique values to check against
key : function, optional
Function which returns a representation of the incoming data.
For example ``key=lambda x: x['a']`` could be used to allow only
pieces of data with unique ``'a'`` values to pass through.
hashable : bool, optional
If True then data is assumed to be hashable, else it is not. This is
used for determining how to cache the history, if hashable then
either dicts or LRU caches are used, otherwise a deque is used.
Defaults to True.
Examples
--------
>>> source = Stream()
>>> source.unique(maxsize=1).sink(print)
>>> for x in [1, 1, 2, 2, 2, 1, 3]:
... source.emit(x)
1
2
1
3
"""
def __init__(self, upstream, maxsize=None, key=identity, hashable=True,
**kwargs):
self.key = key
self.maxsize = maxsize
if hashable:
self.seen = dict()
if self.maxsize:
from zict import LRU
self.seen = LRU(self.maxsize, self.seen)
else:
self.seen = []
Stream.__init__(self, upstream, **kwargs)
def update(self, x, who=None, metadata=None):
y = self.key(x)
emit = True
if isinstance(self.seen, list):
if y in self.seen:
self.seen.remove(y)
emit = False
self.seen.insert(0, y)
if self.maxsize:
del self.seen[self.maxsize:]
if emit:
return self._emit(x, metadata=metadata)
else:
if self.seen.get(y, '~~not_seen~~') == '~~not_seen~~':
self.seen[y] = 1
return self._emit(x, metadata=metadata)
@Stream.register_api()
class union(Stream):
""" Combine multiple streams into one
Every element from any of the upstreams streams will immediately flow
into the output stream. They will not be combined with elements from
other streams.
See also
--------
Stream.zip
Stream.combine_latest
"""
def __init__(self, *upstreams, **kwargs):
super(union, self).__init__(upstreams=upstreams, **kwargs)
def update(self, x, who=None, metadata=None):
return self._emit(x, metadata=metadata)
@Stream.register_api()
class pluck(Stream):
""" Select elements from elements in the stream.
Parameters
----------
pluck : object, list
The element(s) to pick from the incoming element in the stream
If an instance of list, will pick multiple elements.
Examples
--------
>>> source = Stream()
>>> source.pluck([0, 3]).sink(print)
>>> for x in [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11]]:
... source.emit(x)
(1, 4)
(4, 7)
(8, 11)
>>> source = Stream()
>>> source.pluck('name').sink(print)
>>> for x in [{'name': 'Alice', 'x': 123}, {'name': 'Bob', 'x': 456}]:
... source.emit(x)
'Alice'
'Bob'
"""
def __init__(self, upstream, pick, **kwargs):
self.pick = pick
super(pluck, self).__init__(upstream, **kwargs)
def update(self, x, who=None, metadata=None):
if isinstance(self.pick, list):
return self._emit(tuple([x[ind] for ind in self.pick]),
metadata=metadata)
else:
return self._emit(x[self.pick], metadata=metadata)
@Stream.register_api()
class collect(Stream):
"""
Hold elements in a cache and emit them as a collection when flushed.
Examples
--------
>>> source1 = Stream()
>>> source2 = Stream()
>>> collector = collect(source1)
>>> collector.sink(print)
>>> source2.sink(collector.flush)
>>> source1.emit(1)
>>> source1.emit(2)
>>> source2.emit('anything') # flushes collector
...
[1, 2]
"""
def __init__(self, upstream, cache=None, metadata_cache=None, **kwargs):
if cache is None:
cache = deque()
self.cache = cache
if metadata_cache is None:
metadata_cache = deque()
self.metadata_cache = metadata_cache
Stream.__init__(self, upstream, **kwargs)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
self.cache.append(x)
if metadata:
if isinstance(metadata, list):
self.metadata_cache.extend(metadata)
else:
self.metadata_cache.append(metadata)
def flush(self, _=None):
out = tuple(self.cache)
metadata = list(self.metadata_cache)
self._emit(out, metadata)
self._release_refs(metadata)
self.cache.clear()
self.metadata_cache.clear()
@Stream.register_api()
class zip_latest(Stream):
"""Combine multiple streams together to a stream of tuples
The stream which this is called from is lossless. All elements from
the lossless stream are emitted reguardless of when they came in.
This will emit a new tuple consisting of an element from the lossless
stream paired with the latest elements from the other streams.
Elements are only emitted when an element on the lossless stream are
received, similar to ``combine_latest`` with the ``emit_on`` flag.
See Also
--------
Stream.combine_latest
Stream.zip
"""
def __init__(self, lossless, *upstreams, **kwargs):
upstreams = (lossless,) + upstreams
self.last = [None for _ in upstreams]
self.metadata = [None for _ in upstreams]
self.missing = set(upstreams)
self.lossless = lossless
self.lossless_buffer = deque()
Stream.__init__(self, upstreams=upstreams, **kwargs)
def update(self, x, who=None, metadata=None):
self._retain_refs(metadata)
idx = self.upstreams.index(who)
if who is self.lossless:
self.lossless_buffer.append((x, metadata))
elif self.metadata[idx]:
self._release_refs(self.metadata[idx])
self.metadata[idx] = metadata
self.last[idx] = x
if self.missing and who in self.missing:
self.missing.remove(who)
if not self.missing:
L = []
while self.lossless_buffer:
self.last[0], self.metadata[0] = self.lossless_buffer.popleft()
md = [m for ml in self.metadata for m in ml]
L.append(self._emit(tuple(self.last), md))
self._release_refs(self.metadata[0])
return L
@Stream.register_api()
class latest(Stream):
""" Drop held-up data and emit the latest result
This allows you to skip intermediate elements in the stream if there is
some back pressure causing a slowdown. Use this when you only care about
the latest elements, and are willing to lose older data.
This passes through values without modification otherwise.
Examples
--------
>>> source.map(f).latest().map(g) # doctest: +SKIP
"""
_graphviz_shape = 'octagon'
def __init__(self, upstream, **kwargs):
self.condition = Condition()
self.next = []
self.next_metadata = None
kwargs["ensure_io_loop"] = True
Stream.__init__(self, upstream, **kwargs)
self.loop.add_callback(self.cb)
def update(self, x, who=None, metadata=None):
if self.next_metadata:
self._release_refs(self.next_metadata)
self._retain_refs(metadata)
self.next = [x]
self.next_metadata = metadata
self.loop.add_callback(self.condition.notify)
@gen.coroutine
def cb(self):
while True:
yield self.condition.wait()
[x] = self.next
yield self._emit(x, self.next_metadata)
def sync(loop, func, *args, **kwargs):
"""
Run coroutine in loop running in separate thread.
"""
# This was taken from distrbuted/utils.py
timeout = kwargs.pop('callback_timeout', None)
e = threading.Event()
main_tid = get_thread_identity()
result = [None]
error = [False]
@gen.coroutine
def f():
try:
if main_tid == get_thread_identity():
raise RuntimeError("sync() called from thread of running loop")
yield gen.moment
thread_state.asynchronous = True
future = func(*args, **kwargs)
if timeout is not None:
future = gen.with_timeout(timedelta(seconds=timeout), future)
result[0] = yield future
except Exception:
error[0] = sys.exc_info()
finally:
thread_state.asynchronous = False
e.set()
loop.add_callback(f)
if timeout is not None:
if not e.wait(timeout):
raise gen.TimeoutError("timed out after %s s." % (timeout,))
else:
while not e.is_set():
e.wait(10)
if error[0]:
six.reraise(*error[0])
else:
return result[0]
|