File: core.py

package info (click to toggle)
python-streamz 0.6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 824 kB
  • sloc: python: 6,714; makefile: 18; sh: 18
file content (1081 lines) | stat: -rw-r--r-- 36,008 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
import asyncio

import operator
from collections import OrderedDict
import numpy as np
import pandas as pd
import toolz

from ..collection import Streaming, _stream_types, OperatorMixin
from ..sources import Source
from ..utils import M
from . import aggregations
from .utils import is_dataframe_like, is_series_like, is_index_like, \
                    get_base_frame_type, get_dataframe_package


class BaseFrame(Streaming):

    def round(self, decimals=0):
        """ Round elements in frame """
        return self.map_partitions(M.round, self, decimals=decimals)

    def reset_index(self):
        """ Reset Index """
        return self.map_partitions(M.reset_index, self)

    def set_index(self, index, **kwargs):
        """ Set Index """
        return self.map_partitions(M.set_index, self, index, **kwargs)

    def tail(self, n=5):
        """ Round elements in frame """
        return self.map_partitions(M.tail, self, n=n)

    def astype(self, dt):
        return self.map_partitions(M.astype, self, dt)

    @property
    def index(self):
        return self.map_partitions(lambda x: x.index, self)

    def map(self, func, na_action=None):
        return self.map_partitions(self._subtype.map, self, func, na_action=na_action)


class Frame(BaseFrame):
    _stream_type = 'streaming'

    def groupby(self, other):
        """ Groupby aggregations """
        return GroupBy(self, other)

    def aggregate(self, aggregation, start=None):
        return self.accumulate_partitions(aggregations.accumulator,
                                          agg=aggregation,
                                          start=start, stream_type='updating',
                                          returns_state=True)

    def sum(self, start=None):
        """ Sum frame.

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.
        """
        return self.aggregate(aggregations.Sum(), start)

    def count(self, start=None):
        """ Count of frame

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.
        """
        return self.aggregate(aggregations.Count(), start)

    @property
    def size(self):
        """ size of frame """
        return self.aggregate(aggregations.Size())

    def mean(self, start=None):
        """ Average frame

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.
        """
        return self.aggregate(aggregations.Mean(), start)

    def rolling(self, window, min_periods=1, with_state=False, start=()):
        """ Compute rolling aggregations

        When followed by an aggregation method like ``sum``, ``mean``, or
        ``std`` this produces a new Streaming dataframe whose values are
        aggregated over that window.

        The window parameter can be either a number of rows or a timedelta like
        ``"2 minutes"` in which case the index should be a datetime index.

        This operates by keeping enough of a backlog of records to maintain an
        accurate stream.  It performs a copy at every added dataframe.  Because
        of this it may be slow if the rolling window is much larger than the
        average stream element.

        Parameters
        ----------
        window: int or timedelta
            Window over which to roll
        with_state: bool (False)
            Whether to return the state along with the result as a tuple (state, result).
            State may be needed downstream for a number of reasons like checkpointing.
        start: () or resulting Python object type from the operation
            Accepts a valid start state.

        Returns
        -------
        Rolling object

        See Also
        --------
        DataFrame.window: more generic window operations
        """
        return Rolling(self, window, min_periods, with_state, start)

    def window(self, n=None, value=None, with_state=False, start=None):
        """ Sliding window operations

        Windowed operations are defined over a sliding window of data, either
        with a fixed number of elements::

            >>> df.window(n=10).sum()  # sum of the last ten elements

        or over an index value range (index must be monotonic)::

            >>> df.window(value='2h').mean()  # average over the last two hours

        Windowed dataframes support all normal arithmetic, aggregations, and
        groupby-aggregations.

        Parameters
        ----------
        n: int
            Window of number of elements over which to roll
        value: str
            Window of time over which to roll
        with_state: bool (False)
            Whether to return the state along with the result as a tuple (state, result).
            State may be needed downstream for a number of reasons like checkpointing.
        start: None or resulting Python object type from the operation
            Accepts a valid start state.

        Examples
        --------
        >>> df.window(n=10).std()
        >>> df.window(value='2h').count()

        >>> w = df.window(n=100)
        >>> w.groupby(w.name).amount.sum()
        >>> w.groupby(w.x % 10).y.var()

        See Also
        --------
        DataFrame.rolling: mimic's Pandas rolling aggregations
        """
        return Window(self, n=n, value=value, with_state=with_state, start=start)

    def expanding(self, with_state=False, start=None):
        return Expanding(self, n=1, with_state=with_state, start=start)

    def ewm(self, com=None, span=None, halflife=None, alpha=None, with_state=False, start=None):
        return EWM(self, n=1, com=com, span=span, halflife=halflife, alpha=alpha, with_state=with_state, start=start)

    def _cumulative_aggregation(self, op):
        return self.accumulate_partitions(_cumulative_accumulator,
                                          returns_state=True,
                                          start=(),
                                          op=op)

    def cumsum(self):
        """ Cumulative sum """
        return self._cumulative_aggregation(op='cumsum')

    def cumprod(self):
        """ Cumulative product """
        return self._cumulative_aggregation(op='cumprod')

    def cummin(self):
        """ Cumulative minimum """
        return self._cumulative_aggregation(op='cummin')

    def cummax(self):
        """ Cumulative maximum """
        return self._cumulative_aggregation(op='cummax')


class Frames(BaseFrame):
    _stream_type = 'updating'

    def sum(self, **kwargs):
        return self.map_partitions(M.sum, self, **kwargs)

    def mean(self, **kwargs):
        return self.map_partitions(M.mean, self, **kwargs)

    def std(self, **kwargs):
        return self.map_partitions(M.std, self, **kwargs)

    def var(self, **kwargs):
        return self.map_partitions(M.var, self, **kwargs)

    @property
    def size(self, **kwargs):
        return self.map_partitions(M.size, self, **kwargs)

    def count(self, **kwargs):
        return self.map_partitions(M.count, self, **kwargs)

    def nlargest(self, n, *args, **kwargs):
        return self.map_partitions(M.nlargest, self, n, *args, **kwargs)

    def tail(self, n=5):
        """ Round elements in frame """
        return self.map_partitions(M.tail, self, n=n)


class _DataFrameMixin(object):
    @property
    def columns(self):
        return self.example.columns

    @property
    def dtypes(self):
        return self.example.dtypes

    def __getitem__(self, index):
        return self.map_partitions(operator.getitem, self, index)

    def __getattr__(self, key):
        if key in self.columns or not len(self.columns):
            return self.map_partitions(getattr, self, key)
        else:
            raise AttributeError("DataFrame has no attribute %r" % key)

    def __dir__(self):
        o = set(dir(type(self)))
        o.update(self.__dict__)
        o.update(c for c in self.columns
                 if (isinstance(c, str) and c.isidentifier()))
        return list(o)

    def assign(self, **kwargs):
        """ Assign new columns to this dataframe

        Alternatively use setitem syntax

        Examples
        --------
        >>> sdf = sdf.assign(z=sdf.x + sdf.y)  # doctest: +SKIP
        >>> sdf['z'] = sdf.x + sdf.y  # doctest: +SKIP
        """
        kvs = list(toolz.concat(kwargs.items()))

        def _assign(df, *kvs):
            keys = kvs[::2]
            values = kvs[1::2]
            kwargs = OrderedDict(zip(keys, values))
            return df.assign(**kwargs)

        return self.map_partitions(_assign, self, *kvs)

    def to_frame(self):
        """ Convert to a streaming dataframe """
        return self

    def __setitem__(self, key, value):
        if isinstance(value, Series):
            result = self.assign(**{key: value})
        elif isinstance(value, DataFrame):
            result = self.assign(**{k: value[c] for k, c in zip(key, value.columns)})
        else:
            example = self.example.copy()
            example[key] = value
            df_type = type(self.example)
            result = self.map_partitions(df_type.assign, self, **{key: value})

        self.stream = result.stream
        self.example = result.example
        return self

    def query(self, expr, **kwargs):
        df_type = type(self.example)
        return self.map_partitions(df_type.query, self, expr, **kwargs)


class DataFrame(Frame, _DataFrameMixin):
    """ A Streaming Dataframe

    This is a logical collection over a stream of Pandas dataframes.
    Operations on this object will translate to the appropriate operations on
    the underlying Pandas dataframes.

    See Also
    --------
    Series
    """

    def __init__(self, *args, **kwargs):
        # {'x': sdf.x + 1, 'y': sdf.y - 1}
        if len(args) == 1 and not kwargs and isinstance(args[0], dict):
            def concat(tup, module=None, columns=None):
                result = module.concat(tup, axis=1)
                result.columns = columns
                return result

            columns, values = zip(*args[0].items())
            base_frame_type = values[0]._subtype
            df_package = get_dataframe_package(base_frame_type)
            stream = type(values[0].stream).zip(*[v.stream for v in values])
            stream = stream.map(concat, module=df_package, columns=list(columns))
            example = df_package.DataFrame({k: getattr(v, 'example', v)
                                    for k, v in args[0].items()})
            DataFrame.__init__(self, stream, example)
        else:
            example = None
            if "example" in kwargs:
                example = kwargs.get('example')
            elif len(args) > 1:
                example = args[1]
            if callable(example):
                example = example()
                kwargs["example"] = example

            self._subtype = get_base_frame_type(self.__class__.__name__,
                                                is_dataframe_like, example)
            super(DataFrame, self).__init__(*args, **kwargs)

    def verify(self, x):
        """ Verify consistency of elements that pass through this stream """
        super(DataFrame, self).verify(x)
        if list(x.columns) != list(self.example.columns):
            raise IndexError("Input expected to have columns %s, got %s" %
                             (self.example.columns, x.columns))

    @property
    def plot(self):
        try:
            # import has side-effect of attaching .hvplot attribute
            import hvplot.streamz  # # noqa: F401
        except ImportError as err:  # pragma: no cover
            raise ImportError("Streamz dataframe plotting requires hvplot") from err
        return self.hvplot


class _SeriesMixin(object):
    @property
    def dtype(self):
        return self.example.dtype

    def to_frame(self):
        """ Convert to a streaming dataframe """
        return self.map_partitions(M.to_frame, self)


class Series(Frame, _SeriesMixin):
    """ A Streaming Series

    This is a logical collection over a stream of Pandas series objects.
    Operations on this object will translate to the appropriate operations on
    the underlying Pandas series.

    See Also
    --------
    DataFrame
    """

    def __init__(self, *args, **kwargs):
        example = None
        if "example" in kwargs:
            example = kwargs.get('example')
        elif len(args) > 1:
            example = args[1]
        if isinstance(self, Index):
            self._subtype = get_base_frame_type(self.__class__.__name__,
                                                is_index_like, example)
        else:
            self._subtype = get_base_frame_type(self.__class__.__name__,
                                                is_series_like, example)
        super(Series, self).__init__(*args, **kwargs)

    def value_counts(self):
        return self.accumulate_partitions(aggregations.accumulator,
                                          agg=aggregations.ValueCounts(),
                                          start=None, stream_type='updating',
                                          returns_state=True)


class Index(Series):
    pass


class DataFrames(Frames, _DataFrameMixin):
    pass


class Seriess(Frames, _SeriesMixin):
    pass


def _cumulative_accumulator(state, new, op=None):
    if not len(new):
        return state, new

    if not len(state):
        df = new
    else:
        df_package = get_dataframe_package(new)
        df = df_package.concat([state, new])  # ouch, full copy

    result = getattr(df, op)()
    new_state = result.iloc[-1:]
    if len(state):
        result = result[1:]
    return new_state, result


class Rolling(object):
    """ Rolling aggregations

    This intermediate class enables rolling aggregations across either a fixed
    number of rows or a time window.

    Examples
    --------
    >>> sdf.rolling(10).x.mean()  # doctest: +SKIP
    >>> sdf.rolling('100ms').x.mean()  # doctest: +SKIP
    """

    def __init__(self, sdf, window, min_periods, with_state, start):
        self.root = sdf
        if not isinstance(window, int):
            window = pd.Timedelta(window)
            min_periods = 1
        self.window = window
        self.min_periods = min_periods
        self.with_state = with_state
        self.start = start

    def __getitem__(self, key):
        sdf = self.root[key]
        return Rolling(sdf, self.window, self.min_periods, self.with_state, self.start)

    def __getattr__(self, key):
        if key in self.root.columns or not len(self.root.columns):
            return self[key]
        else:
            raise AttributeError("Rolling has no attribute %r" % key)

    def _known_aggregation(self, op, *args, **kwargs):
        return self.root.accumulate_partitions(rolling_accumulator,
                                               window=self.window,
                                               op=op,
                                               args=args,
                                               kwargs=kwargs,
                                               start=self.start,
                                               returns_state=True,
                                               with_state=self.with_state)

    def sum(self):
        """ Rolling sum """
        return self._known_aggregation('sum')

    def mean(self):
        """ Rolling mean """
        return self._known_aggregation('mean')

    def min(self):
        """ Rolling minimum """
        return self._known_aggregation('min')

    def max(self):
        """ Rolling maximum """
        return self._known_aggregation('max')

    def median(self):
        """ Rolling median """
        return self._known_aggregation('median')

    def std(self, *args, **kwargs):
        """ Rolling standard deviation """
        return self._known_aggregation('std', *args, **kwargs)

    def var(self, *args, **kwargs):
        """ Rolling variance """
        return self._known_aggregation('var', *args, **kwargs)

    def count(self, *args, **kwargs):
        """ Rolling count """
        return self._known_aggregation('count', *args, **kwargs)

    def aggregate(self, *args, **kwargs):
        """ Rolling aggregation """
        return self._known_aggregation('aggregate', *args, **kwargs)

    def quantile(self, *args, **kwargs):
        """ Rolling quantile """
        return self._known_aggregation('quantile', *args, **kwargs)


class Window(OperatorMixin):
    """ Windowed aggregations

    This provides a set of aggregations that can be applied over a sliding
    window of data.

    See Also
    --------
    DataFrame.window: contains full docstring
    """

    def __init__(self, sdf, n=None, value=None, with_state=False, start=None):
        if value is None and isinstance(n, (str, pd.Timedelta)):
            value = n
            n = None
        self.n = n
        self.root = sdf
        if isinstance(value, str) and isinstance(self.root.example.index, pd.DatetimeIndex):
            value = pd.Timedelta(value)
        self.value = value
        self.with_state = with_state
        self.start = start

    def __getitem__(self, key):
        sdf = self.root[key]
        return type(self)(
            sdf,
            n=self.n,
            value=self.value,
            with_state=self.with_state,
            start=self.start
        )

    def __getattr__(self, key):
        if key in self.root.columns or not len(self.root.columns):
            return self[key]
        else:
            raise AttributeError(f"{type(self)} has no attribute {key}")

    def map_partitions(self, func, *args, **kwargs):
        args2 = [a.root if isinstance(a, type(self)) else a for a in args]
        root = self.root.map_partitions(func, *args2, **kwargs)
        return type(self)(
            root,
            n=self.n,
            value=self.value,
            with_state=self.with_state,
            start=self.start
        )

    @property
    def index(self):
        return self.map_partitions(lambda x: x.index, self)

    @property
    def columns(self):
        return self.root.columns

    @property
    def dtypes(self):
        return self.root.dtypes

    @property
    def example(self):
        return self.root.example

    def reset_index(self):
        return type(self)(self.root.reset_index(), n=self.n, value=self.value)

    def aggregate(self, agg):
        if self.n is not None:
            diff = aggregations.diff_iloc
            window = self.n
        elif self.value is not None:
            diff = aggregations.diff_loc
            window = self.value
        return self.root.accumulate_partitions(aggregations.window_accumulator,
                                               diff=diff,
                                               window=window,
                                               agg=agg,
                                               start=self.start,
                                               returns_state=True,
                                               stream_type='updating',
                                               with_state=self.with_state)

    def full(self):
        return self.aggregate(aggregations.Full())

    def apply(self, func):
        """ Apply an arbitrary function over each window of data """
        result = self.aggregate(aggregations.Full())
        return result.map_partitions(func, result)

    def sum(self):
        """ Sum elements within window """
        return self.aggregate(aggregations.Sum())

    def count(self):
        """ Count elements within window """
        return self.aggregate(aggregations.Count())

    def mean(self):
        """ Average elements within window """
        return self.aggregate(aggregations.Mean())

    def var(self, ddof=1):
        """ Compute variance of elements within window """
        return self.aggregate(aggregations.Var(ddof=ddof))

    def std(self, ddof=1):
        """ Compute standard deviation of elements within window """
        return self.var(ddof=ddof) ** 0.5

    @property
    def size(self):
        """ Number of elements within window """
        return self.aggregate(aggregations.Size())

    def value_counts(self):
        """ Count groups of elements within window """
        return self.aggregate(aggregations.ValueCounts())

    def groupby(self, other):
        """ Groupby-aggregations within window """
        return WindowedGroupBy(self.root, other, None, self.n, self.value,
                               self.with_state, self.start)


class Expanding(Window):

    def aggregate(self, agg):
        window = self.n
        diff = aggregations.diff_expanding
        return self.root.accumulate_partitions(aggregations.window_accumulator,
                                               diff=diff,
                                               window=window,
                                               agg=agg,
                                               start=self.start,
                                               returns_state=True,
                                               stream_type='updating',
                                               with_state=self.with_state)

    def groupby(self, other):
        raise NotImplementedError


class EWM(Expanding):

    def __init__(
            self,
            sdf,
            n=1,
            value=None,
            with_state=False,
            start=None,
            com=None,
            span=None,
            halflife=None,
            alpha=None
    ):
        super().__init__(sdf, n=n, value=value, with_state=with_state, start=start)
        self._com = self._get_com(com, span, halflife, alpha)
        self.com = com
        self.span = span
        self.alpha = alpha
        self.halflife = halflife

    def __getitem__(self, key):
        sdf = self.root[key]
        return type(self)(
            sdf,
            n=self.n,
            value=self.value,
            with_state=self.with_state,
            start=self.start,
            com=self.com,
            span=self.span,
            halflife=self.halflife,
            alpha=self.alpha
        )

    @staticmethod
    def _get_com(com, span, halflife, alpha):
        if sum(var is not None for var in (com, span, halflife, alpha)) > 1:
            raise ValueError("Can only provide one of `com`, `span`, `halflife`, `alpha`.")
        # Convert to center of mass; domain checks ensure 0 < alpha <= 1
        if com is not None:
            if com < 0:
                raise ValueError("com must satisfy: comass >= 0")
        elif span is not None:
            if span < 1:
                raise ValueError("span must satisfy: span >= 1")
            com = (span - 1) / 2
        elif halflife is not None:
            if halflife <= 0:
                raise ValueError("halflife must satisfy: halflife > 0")
            decay = 1 - np.exp(np.log(0.5) / halflife)
            com = 1 / decay - 1
        elif alpha is not None:
            if alpha <= 0 or alpha > 1:
                raise ValueError("alpha must satisfy: 0 < alpha <= 1")
            com = (1 - alpha) / alpha
        else:
            raise ValueError("Must pass one of com, span, halflife, or alpha")

        return float(com)

    def full(self):
        raise NotImplementedError

    def apply(self, func):
        """ Apply an arbitrary function over each window of data """
        raise NotImplementedError

    def sum(self):
        """ Sum elements within window """
        raise NotImplementedError

    def count(self):
        """ Count elements within window """
        raise NotImplementedError

    def mean(self):
        """ Average elements within window """
        return self.aggregate(aggregations.EWMean(self._com))

    def var(self, ddof=1):
        """ Compute variance of elements within window """
        raise NotImplementedError

    def std(self, ddof=1):
        """ Compute standard deviation of elements within window """
        raise NotImplementedError

    @property
    def size(self):
        """ Number of elements within window """
        raise NotImplementedError

    def value_counts(self):
        """ Count groups of elements within window """
        raise NotImplementedError


def rolling_accumulator(acc, new, window=None, op=None,
                        with_state=False, args=(), kwargs={}):
    if len(acc):
        df_package = get_dataframe_package(new)
        df = df_package.concat([acc, new])
    else:
        df = new
    result = getattr(df.rolling(window), op)(*args, **kwargs)
    if isinstance(window, int):
        new_acc = df.iloc[-window:]
    else:
        new_acc = df.loc[result.index.max() - window:]
    result = result.iloc[len(acc):]
    return new_acc, result


def _accumulate_mean(accumulator, new):
    accumulator = accumulator.copy()
    accumulator['sums'] += new.sum()
    accumulator['counts'] += new.count()
    result = accumulator['sums'] / accumulator['counts']
    return accumulator, result


def _accumulate_sum(accumulator, new):
    return accumulator + new.sum()


def _accumulate_size(accumulator, new):
    return accumulator + new.size()


class GroupBy(object):
    """ Groupby aggregations on streaming dataframes """

    def __init__(self, root, grouper, index=None):
        self.root = root
        self.grouper = grouper
        self.index = index

    def __getitem__(self, index):
        return GroupBy(self.root, self.grouper, index)

    def __getattr__(self, key):
        if key in self.root.columns or not len(self.root.columns):
            return self[key]
        else:
            raise AttributeError("GroupBy has no attribute %r" % key)

    def _accumulate(self, Agg, with_state=False, start=None, **kwargs):
        stream_type = 'updating'

        if isinstance(self.grouper, Streaming):
            stream = self.root.stream.zip(self.grouper.stream)
            grouper_example = self.grouper.example
            agg = Agg(self.index, grouper=None, **kwargs)
        else:
            stream = self.root.stream
            grouper_example = self.grouper
            agg = Agg(self.index, grouper=self.grouper, **kwargs)

        # Compute example
        state = agg.initial(self.root.example, grouper=grouper_example)
        if hasattr(grouper_example, 'iloc'):
            grouper_example = grouper_example.iloc[:0]
        elif isinstance(grouper_example, np.ndarray) or is_index_like(grouper_example):
            grouper_example = grouper_example[:0]
        _, example = agg.on_new(state,
                                self.root.example.iloc[:0],
                                grouper=grouper_example)

        outstream = stream.accumulate(aggregations.groupby_accumulator,
                                      agg=agg,
                                      start=start,
                                      returns_state=True,
                                      with_state=with_state)

        for fn, s_type in _stream_types[stream_type]:
            """Function checks if example is of a specific frame type"""
            if fn(example):
                return s_type(outstream, example)
        return Streaming(outstream, example, stream_type=stream_type)

    def count(self, start=None):
        """ Groupby-count

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.
        """
        return self._accumulate(aggregations.GroupbyCount, start=start)

    def mean(self, with_state=False, start=None):
        """ Groupby-mean

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.
        """
        return self._accumulate(aggregations.GroupbyMean, with_state=with_state, start=start)

    def size(self):
        """ Groupby-size """
        return self._accumulate(aggregations.GroupbySize)

    def std(self, ddof=1):
        """ Groupby-std """
        return self.var(ddof=ddof) ** 0.5

    def sum(self, start=None):
        """ Groupby-sum

        Parameters
        ----------
        start: None or resulting Python object type from the operation
            Accepts a valid start state.

        """
        return self._accumulate(aggregations.GroupbySum, start=start)

    def var(self, ddof=1):
        """ Groupby-variance """
        return self._accumulate(aggregations.GroupbyVar, ddof=ddof)


class WindowedGroupBy(GroupBy):
    """ Groupby aggregations over a window of data """

    def __init__(self, root, grouper, index=None, n=None, value=None, with_state=False, start=None):
        self.root = root
        self.grouper = grouper
        self.index = index
        self.n = n
        if isinstance(value, str) and isinstance(self.root.example.index, pd.DatetimeIndex):
            value = pd.Timedelta(value)
        self.value = value
        self.with_state = with_state
        self.start = start

    def __getitem__(self, index):
        return WindowedGroupBy(self.root, self.grouper, index, self.n, self.value, self.with_state, self.start)

    def _accumulate(self, Agg, **kwargs):
        stream_type = 'updating'

        if isinstance(self.grouper, Streaming):
            stream = self.root.stream.zip(self.grouper.stream)
            grouper_example = self.grouper.example
            agg = Agg(self.index, grouper=None, **kwargs)
        elif isinstance(self.grouper, Window):
            stream = self.root.stream.zip(self.grouper.root.stream)
            grouper_example = self.grouper.root.example
            agg = Agg(self.index, grouper=None, **kwargs)
        else:
            stream = self.root.stream
            grouper_example = self.grouper
            agg = Agg(self.index, grouper=self.grouper, **kwargs)

        # Compute example
        state = agg.initial(self.root.example, grouper=grouper_example)
        if hasattr(grouper_example, 'iloc'):
            grouper_example = grouper_example.iloc[:0]
        elif isinstance(grouper_example, np.ndarray) or is_index_like(grouper_example):
            grouper_example = grouper_example[:0]
        _, example = agg.on_new(state,
                                self.root.example.iloc[:0],
                                grouper=grouper_example)

        if self.n is not None:
            diff = aggregations.diff_iloc
            window = self.n
        elif self.value is not None:
            diff = aggregations.diff_loc
            window = self.value

        outstream = stream.accumulate(aggregations.windowed_groupby_accumulator,
                                      agg=agg,
                                      start=self.start,
                                      returns_state=True,
                                      diff=diff,
                                      window=window,
                                      with_state=self.with_state)

        for fn, s_type in _stream_types[stream_type]:
            """Function checks if example is of a specific frame type"""
            if fn(example):
                return s_type(outstream, example)
        return Streaming(outstream, example, stream_type=stream_type)


def random_datapoint(now=None, **kwargs):
    """Example of querying a single current value"""
    if now is None:
        now = pd.Timestamp.now()
    return pd.DataFrame(
        {'a': np.random.random(1)}, index=[now])


def random_datablock(last, now, **kwargs):
    """
    Example of querying over a time range since last update

    Parameters
    ----------
    last: pd.Timestamp
        Time of previous call to this function.
    now: pd.Timestamp
        Current time.
    freq: pd.Timedelta, optional
        The time interval between individual records to be returned.
        For good throughput, should be much smaller than the
        interval at which this function is called.

    Returns a pd.DataFrame with random values where:

    The x column is uniformly distributed.
    The y column is Poisson distributed.
    The z column is normally distributed.
    """
    freq = kwargs.get("freq", pd.Timedelta("100ms"))
    index = pd.date_range(start=last + freq, end=now, freq=freq)

    df = pd.DataFrame({'x': np.random.random(len(index)),
                       'y': np.random.poisson(size=len(index)),
                       'z': np.random.normal(0, 1, size=len(index))},
                      index=index)
    return df


@DataFrame.register_api(staticmethod, "from_periodic")
class PeriodicDataFrame(DataFrame):
    """A streaming dataframe using the asyncio ioloop to poll a callback fn

    Parameters
    ----------
    datafn: callable
        Callback function accepting **kwargs and returning a
        pd.DataFrame.  kwargs will include at least
        'last' (pd.Timestamp.now() when datafn was last invoked), and
        'now' (current pd.Timestamp.now()).
    interval: timedelta
        The time interval between new dataframes.
    dask: boolean
        If true, uses a DaskStream instead of a regular Source.
    **kwargs:
        Optional keyword arguments to be passed into the callback function.

    By default, returns a three-column random pd.DataFrame generated
    by the 'random_datablock' function.

    Example
    -------
    >>> df = PeriodicDataFrame(interval='1s', datafn=random_datapoint)  # doctest: +SKIP
    """

    def __init__(self, datafn=random_datablock, interval='500ms', dask=False,
                 start=True, **kwargs):
        if dask:
            from streamz.dask import DaskStream
            source = DaskStream()
        else:
            source = Source()
        self.loop = source.loop
        self.interval = pd.Timedelta(interval).total_seconds()
        self.source = source
        self.continue_ = [False]  # like the oppose of self.stopped
        self.kwargs = kwargs

        stream = self.source.map(lambda x: datafn(**x, **kwargs))
        example = datafn(last=pd.Timestamp.now(), now=pd.Timestamp.now(), **kwargs)

        super(PeriodicDataFrame, self).__init__(stream, example)
        if start:
            self.start()

    def start(self):
        if not self.continue_[0]:
            self.continue_[0] = True
            self.loop.add_callback(self._cb, self.interval, self.source,
                                   self.continue_)

    def __del__(self):
        self.stop()

    def stop(self):
        self.continue_[0] = False

    @staticmethod
    async def _cb(interval, source, continue_):
        last = pd.Timestamp.now()
        while continue_[0]:
            await asyncio.sleep(interval)
            now = pd.Timestamp.now()
            await asyncio.gather(*source._emit(dict(last=last, now=now)))
            last = now


@DataFrame.register_api(staticmethod, "random")
class Random(PeriodicDataFrame):
    """PeriodicDataFrame providing random values by default

    Accepts same parameters as PeriodicDataFrame, plus
    `freq`, a string that will be converted to a pd.Timedelta
    and passed to the 'datafn'.

    Useful mainly for examples and docs.

    Example
    -------
    >>> source = Random(freq='100ms', interval='1s')  # doctest: +SKIP
    """

    def __init__(self, freq='100ms', interval='500ms', dask=False,
                 start=True, datafn=random_datablock):
        super(Random, self).__init__(datafn, interval, dask, start,
                                     freq=pd.Timedelta(freq))


_stream_types['streaming'].append((is_dataframe_like, DataFrame))
_stream_types['streaming'].append((is_index_like, Index))
_stream_types['streaming'].append((is_series_like, Series))
_stream_types['updating'].append((is_dataframe_like, DataFrames))
_stream_types['updating'].append((is_series_like, Seriess))