File: river.py

package info (click to toggle)
python-streamz 0.6.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 824 kB
  • sloc: python: 6,714; makefile: 18; sh: 18
file content (62 lines) | stat: -rw-r--r-- 1,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from . import Stream


# TODO: most river classes support batches, e.g., learn_many, more efficiently


class RiverTransform(Stream):
    """Pass data through one or more River transforms"""

    def __init__(self, model, **kwargs):
        super().__init__(**kwargs)
        self.model = model

    def update(self, x, who=None, metadata=None):
        out = self.model.transform_one(*x)
        self.emit(out)


class RiverTrain(Stream):

    def __init__(self, model, metric=None, pass_model=False, **kwargs):
        """

        If metric and pass_model are both defaults, this is effectively
        a sink.

        :param model: river model or pipeline
        :param metric: river metric
            If given, it is emitted on every sample
        :param pass_model: bool
            If True, the (updated) model if emitted for each sample
        """
        super().__init__(**kwargs)
        self.model = model
        if pass_model and metric is not None:
            raise TypeError
        self.pass_model = pass_model
        self.metric = metric

    def update(self, x, who=None, metadata=None):
        """
        :param x: tuple
            (x, [y[, w]) floats for single sample. Include
        """
        self.model.learn_one(*x)
        if self.metric:
            yp = self.model.predict_one(x[0])
            weights = x[2] if len(x) > 1 else 1.0
            return self._emit(self.metric.update(x[1], yp, weights).get(), metadata=metadata)
        if self.pass_model:
            return self._emit(self.model, metadata=metadata)


class RiverPredict(Stream):

    def __init__(self, model, **kwargs):
        super().__init__(**kwargs)
        self.model = model

    def update(self, x, who=None, metadata=None):
        out = self.model.predict_one(x)
        return self._emit(out, metadata=metadata)