File: sudoku.py

package info (click to toggle)
python-sudoku 2.0.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 132 kB
  • sloc: python: 567; makefile: 2; sh: 2
file content (705 lines) | stat: -rw-r--r-- 30,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
from random import shuffle, seed as random_seed, randrange
import sys

try:
    from typing import Iterable, List, Optional, Tuple, Union, cast, TYPE_CHECKING
except ImportError:
    TYPE_CHECKING = False
    if not TYPE_CHECKING:
        # Stubs for Python 2
        cast = lambda _, value: value  # type: ignore
        
        class FakeList():
            def __getitem__(self, key):
                return FakeList()

        List = FakeList() # type: ignore

class UnsolvableSudoku(Exception):
    pass

class _SudokuSolver:
    def __init__(self, sudoku):
        # type: (Sudoku) -> None
        self.width = sudoku.width
        self.height = sudoku.height
        self.size = sudoku.size
        self.sudoku = sudoku

    def _solve(self):
        # type: () -> Optional[Sudoku]
        blanks = self.__get_blanks()
        blank_count = len(blanks)
        are_blanks_filled = [False for _ in range(blank_count)]
        blank_fillers = self.__calculate_blank_cell_fillers(blanks)
        solution_board = self.__get_solution(
            Sudoku._copy_board(self.sudoku.board), blanks, blank_fillers, are_blanks_filled)
        solution_difficulty = 0
        if not solution_board:
            return None
        return Sudoku(self.width, self.height, board=solution_board, difficulty=solution_difficulty)

    def _has_multiple_solutions(self):
        # type: () -> bool
        blanks = self.__get_blanks()
        blank_count = len(blanks)
        are_blanks_filled = [False for _ in range(blank_count)]
        blank_fillers = self.__calculate_blank_cell_fillers(blanks)
        solution_board = self.__get_solution(
            Sudoku._copy_board(self.sudoku.board), blanks, blank_fillers, are_blanks_filled)

        are_blanks_filled = [False for _ in range(blank_count)]
        blank_fillers = self.__calculate_blank_cell_fillers(blanks)
        solution_board2 = self.__get_solution(
            Sudoku._copy_board(self.sudoku.board), blanks, blank_fillers, are_blanks_filled, reverse=True)
        
        if not solution_board:
            return False
        
        return solution_board != solution_board2

    def __calculate_blank_cell_fillers(self, blanks):
        # type: (List[Tuple[int, int]]) -> List[List[List[bool]]]
        sudoku = self.sudoku
        valid_fillers = [[[True for _ in range(self.size)] for _ in range(
            self.size)] for _ in range(self.size)]
        for row, col in blanks:
            for i in range(self.size):
                same_row = sudoku.board[row][i]
                same_col = sudoku.board[i][col]
                if same_row and i != col:
                    valid_fillers[row][col][same_row - 1] = False
                if same_col and i != row:
                    valid_fillers[row][col][same_col - 1] = False
            grid_row, grid_col = row // sudoku.height, col // sudoku.width
            grid_row_start = grid_row * sudoku.height
            grid_col_start = grid_col * sudoku.width
            for y_offset in range(sudoku.height):
                for x_offset in range(sudoku.width):
                    if grid_row_start + y_offset == row and grid_col_start + x_offset == col:
                        continue
                    cell = sudoku.board[grid_row_start +
                                        y_offset][grid_col_start + x_offset]
                    if cell:
                        valid_fillers[row][col][cell - 1] = False
        return valid_fillers

    def __get_blanks(self):
        # type: () -> List[Tuple[int, int]]
        blanks = []
        for i, row in enumerate(self.sudoku.board):
            for j, cell in enumerate(row):
                if cell == Sudoku._empty_cell_value:
                    blanks += [(i, j)]
        return blanks

    def __is_neighbor(self, blank1, blank2):
        # type: (Tuple[int, int], Tuple[int, int]) -> bool
        row1, col1 = blank1
        row2, col2 = blank2
        if row1 == row2 or col1 == col2:
            return True
        grid_row1, grid_col1 = row1 // self.height, col1 // self.width
        grid_row2, grid_col2 = row2 // self.height, col2 // self.width
        return grid_row1 == grid_row2 and grid_col1 == grid_col2

    # Optimized version of above
    def __get_solution(self, board, blanks, blank_fillers, are_blanks_filled, reverse=False):
        # type: (List[List[Optional[int]]], List[Tuple[int, int]], List[List[List[bool]]], List[bool], bool) -> Optional[List[List[int]]]
        min_filler_count = None
        chosen_blank = None
        for i, blank in enumerate(blanks):
            x, y = blank
            if are_blanks_filled[i]:
                continue
            valid_filler_count = sum(blank_fillers[x][y])
            if valid_filler_count == 0:
                # Blank cannot be filled with any number, no solution
                return None
            if not min_filler_count or valid_filler_count < min_filler_count:
                min_filler_count = valid_filler_count
                chosen_blank = blank
                chosen_blank_index = i

        if not chosen_blank:
            # All blanks have been filled with valid values, return this board as the solution
            return cast(List[List[int]], board)

        row, col = chosen_blank

        # Declare chosen blank as filled
        are_blanks_filled[chosen_blank_index] = True

        # Save list of neighbors affected by the filling of current cell
        revert_list = [False for _ in range(len(blanks))]

        if reverse:
            foo = range(self.size - 1, -1, -1)
        else:
            foo = range(self.size)
        for number in foo:
            # Only try filling this cell with numbers its neighbors aren't already filled with
            if not blank_fillers[row][col][number]:
                continue

            # Test number in this cell, number + 1 is used because number is zero-indexed
            board[row][col] = number + 1

            for i, blank in enumerate(blanks):
                blank_row, blank_col = blank
                if blank == chosen_blank:
                    continue
                if self.__is_neighbor(blank, chosen_blank) and blank_fillers[blank_row][blank_col][number]:
                    blank_fillers[blank_row][blank_col][number] = False
                    revert_list[i] = True
                else:
                    revert_list[i] = False
            solution_board = self.__get_solution(
                board, blanks, blank_fillers, are_blanks_filled, reverse=reverse)

            if solution_board:
                return solution_board

            # No solution found by having tested number in this cell
            # So we reallow neighbor cells to have this number filled in them
            for i, blank in enumerate(blanks):
                if revert_list[i]:
                    blank_row, blank_col = blank
                    blank_fillers[blank_row][blank_col][number] = True

        # If this point is reached, there is no solution with the initial board state,
        # a mistake must have been made in earlier steps

        # Declare chosen cell as empty once again
        are_blanks_filled[chosen_blank_index] = False
        board[row][col] = Sudoku._empty_cell_value

        return None


# Optimized version of above

class Sudoku:
    _empty_cell_value = None # type: None
    __difficulty = None # type: float

    def __init__(self, width = 3, height = None, board = None, difficulty = None, seed = randrange(sys.maxsize)):
        # type: (int, Optional[int], Optional[Iterable[Iterable[Optional[int]]]], Optional[float], int) -> None
        """
        Initializes a Sudoku board

        :param width: Integer representing the width of the Sudoku grid. Defaults to 3.
        :param height: Optional integer representing the height of the Sudoku grid. If not provided, defaults to the value of `width`.
        :param board: Optional iterable for a the initial state of the Sudoku board.
        :param difficulty: Optional float representing the difficulty level of the Sudoku puzzle. If provided, sets the difficulty level based on the number of empty cells. Defaults to None.
        :param seed: Integer representing the seed for the random number generator used to generate the board. Defaults to a random seed within the system's maximum size.

        :raises AssertionError: If the width, height, or size of the board is invalid.
        """
        self.width = width
        self.height = height if height else width
        self.size = self.width * self.height

        assert self.width > 0, 'Width cannot be less than 1'
        assert self.height > 0, 'Height cannot be less than 1'
        assert self.size > 1, 'Board size cannot be 1 x 1'

        if difficulty is not None:
            self.__difficulty = difficulty

        if board:
            blank_count = 0
            self.board = [[cell for cell in row] for row in board] # type: List[List[Optional[int]]]
            for row in self.board:
                for i in range(len(row)):
                    if not row[i] in range(1, self.size + 1):
                        row[i] = Sudoku._empty_cell_value
                        blank_count += 1
            if difficulty == None:
                if self.validate():
                    self.__difficulty = blank_count / \
                        (self.size * self.size)
                else:
                    self.__difficulty = -2
        else:
            positions = list(range(self.size))
            random_seed(seed)
            shuffle(positions)
            self.board = [[(i + 1) if i == positions[j]
                           else Sudoku._empty_cell_value for i in range(self.size)] for j in range(self.size)]

    def solve(self, assert_solvable = False):
        # type: (bool) -> Sudoku
        """
        Solves the given Sudoku board

        :param assert_solvable: Boolean for if you wish to raise an UnsolvableSodoku error when the board is invalid. Defaults to `false`.
        :raises UnsolvableSudoku:
        """
        solution = _SudokuSolver(self)._solve() if self.validate() else None
        if solution:
            return solution
        elif assert_solvable:
            raise UnsolvableSudoku('No solution found')
        else:
            solution_board = Sudoku.empty(self.width, self.height).board
            solution_difficulty = -2
            return Sudoku(board=solution_board, difficulty=solution_difficulty)

    def has_multiple_solutions(self):
        # type: () -> bool
        """
        Returns if the Sudoku board has multiple solutions.

        Solves the Sudoku board via backtracking:
        - once by filling the cells with increasing numbers
        - once by filling the cells with decreasing numbers
        If the two solutions are different, the board has multiple solutions (and vice versa).
        """
        return _SudokuSolver(self)._has_multiple_solutions()

    def validate(self):
        # type: () -> bool
        row_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]
        col_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]
        box_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]

        for row in range(self.size):
            for col in range(self.size):
                cell = self.board[row][col]
                box = (row // self.height) * self.height + (col // self.width)
                if cell == Sudoku._empty_cell_value:
                    continue
                elif isinstance(cell, int):
                    if row_numbers[row][cell - 1]:
                        return False
                    elif col_numbers[col][cell - 1]:
                        return False
                    elif box_numbers[box][cell - 1]:
                        return False
                    row_numbers[row][cell - 1] = True
                    col_numbers[col][cell - 1] = True
                    box_numbers[box][cell - 1] = True
        return True

    @ staticmethod
    def _copy_board(board):
        # type: (Iterable[Iterable[Optional[int]]]) -> List[List[Optional[int]]]
        return [[cell for cell in row] for row in board]

    @ staticmethod
    def empty(width, height):
        # type: (int, int) -> Sudoku
        size = width * height
        board = [[Sudoku._empty_cell_value] * size] * size
        return Sudoku(width, height, board, 0)

    def difficulty(self, difficulty):
        # type: (float) -> Sudoku
        """
        Sets the difficulty of the Sudoku board by removing cells.

        This method modifies the current Sudoku instance by removing cells from the solved puzzle to achieve the desired difficulty level. The difficulty is specified as a float value between 0 and 1, where 0 represents the easiest puzzle (fully solved) and 1 represents the most difficult puzzle (almost empty).

        :param difficulty: A float value between 0 and 1 representing the desired difficulty level of the Sudoku puzzle.
        :return: A new Sudoku instance representing the puzzle with adjusted difficulty.
        :raises AssertionError: If the provided difficulty value is not within the range of 0 to 1.
        """
        assert 0 < difficulty < 1, 'Difficulty must be between 0 and 1'
        indices = list(range(self.size * self.size))
        shuffle(indices)
        problem_board = self.solve().board
        for index in indices[:int(difficulty * self.size * self.size)]:
            row_index = index // self.size
            col_index = index % self.size
            problem_board[row_index][col_index] = Sudoku._empty_cell_value
        # check for multiple solutions
        puzzle = Sudoku(self.width, self.height, problem_board, difficulty)
        if puzzle.has_multiple_solutions():
            return Sudoku(self.width, self.height, problem_board, -3)
        return Sudoku(self.width, self.height, problem_board, difficulty)

    def get_difficulty(self):
        # type: () -> float
        return self.__difficulty

    def show(self):
        # type: () -> None
        """
        Prints the puzzle to the terminal
        """
        if self.__difficulty == -3:
            print('Puzzle has multiple solutions')
        elif self.__difficulty == -2:
            print('Puzzle has no solution')
        elif self.__difficulty == -1:
            print('Invalid puzzle. Please solve the puzzle (puzzle.solve()), or set a difficulty (puzzle.difficulty())')
        elif not self.board:
            print('No solution')
        else:
            print('Puzzle has exactly one solution')
        print(self.__format_board_ascii())

    def show_full(self):
        # type: () -> None
        """
        Prints the puzzle to the terminal, with more information
        """
        print(self.__str__())

    def __format_board_ascii(self):
        # type: () -> str
        table = ''
        cell_length = len(str(self.size))
        format_int = '{0:0' + str(cell_length) + 'd}'
        for i, row in enumerate(self.board):
            if i == 0:
                table += ('+-' + '-' * (cell_length + 1) *
                          self.width) * self.height + '+' + '\n'
            table += (('| ' + '{} ' * self.width) * self.height + '|').format(*[format_int.format(
                x) if x != Sudoku._empty_cell_value else ' ' * cell_length for x in row]) + '\n'
            if i == self.size - 1 or i % self.height == self.height - 1:
                table += ('+-' + '-' * (cell_length + 1) *
                          self.width) * self.height + '+' + '\n'
        return table

    def __str__(self):
        # type: () -> str
        if self.__difficulty == -2:
            difficulty_str = 'INVALID PUZZLE (GIVEN PUZZLE HAS NO SOLUTION)'
        elif self.__difficulty == -1:
            difficulty_str = 'INVALID PUZZLE'
        elif self.__difficulty == -3:
            difficulty_str = 'INVALID PUZZLE (MULTIPLE SOLUTIONS)'
        elif self.__difficulty == 0:
            difficulty_str = 'SOLVED'
        else:
            difficulty_str = '{:.2f}'.format(self.__difficulty)
        return '''
---------------------------
{}x{} ({}x{}) SUDOKU PUZZLE
Difficulty: {}
---------------------------
{}
        '''.format(self.size, self.size, self.width, self.height, difficulty_str, self.__format_board_ascii())


class DiagonalSudoku(Sudoku):
    __difficulty = None # type: float

    def __init__(self, size = 3, board = None, difficulty = None, seed = randrange(sys.maxsize)):
        # type: (int, Optional[Iterable[Iterable[Optional[int]]]], Optional[float], int) -> None
        self.width = size
        self.height = size
        self.size = size * size
        self.diagonal_left_to_right = [(i, i) for i in range(self.size)]
        self.diagonal_right_to_left = [
            (i, j) for i, j in enumerate(range(self.size-1, -1, -1))]

        assert self.width > 0, 'Width cannot be less than 1'
        assert self.height > 0, 'Height cannot be less than 1'
        assert self.size > 1, 'Board size cannot be 1 x 1'

        if difficulty is not None:
            self.__difficulty = difficulty

        if board:
            blank_count = 0
            self.board = [[cell for cell in row] for row in board] # type: List[List[Union[int, None]]]
            for _row in self.board:
                for i in range(len(_row)):
                    if _row[i] not in range(1, self.size + 1):
                        _row[i] = Sudoku._empty_cell_value
                        blank_count += 1
            for row, col in self.diagonal_left_to_right:
                if self.board[row][col] not in range(1, self.size+1):
                    self.board[row][col] = Sudoku._empty_cell_value
                    blank_count += 1
            for row, col in self.diagonal_right_to_left:
                if self.board[row][col] not in range(1, self.size+1):
                    self.board[row][col] = Sudoku._empty_cell_value
                    blank_count += 1
            if difficulty == None:
                if self.validate():
                    self.__difficulty = blank_count / \
                        (self.size * self.size)
                else:
                    self.__difficulty = -2
        else:
            positions = list(range(1, self.size+1))
            random_seed(seed)
            shuffle(positions)
            self.board = [[positions[j] if i == j else Sudoku._empty_cell_value for i in range(
                self.size)] for j in range(self.size)]

    def difficulty(self, difficulty):
        # type: (float) -> DiagonalSudoku
        assert 0 < difficulty < 1, 'Difficulty must be between 0 and 1'
        indices = list(range(self.size * self.size))
        shuffle(indices)
        problem_board = self.solve().board
        for index in indices[:int(difficulty * self.size * self.size)]:
            row_index = index // self.size
            col_index = index % self.size
            problem_board[row_index][col_index] = Sudoku._empty_cell_value
        return DiagonalSudoku(self.width, problem_board, difficulty)

    def validate(self):
        # type: () -> bool
        row_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]
        col_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]
        box_numbers = [[False for _ in range(self.size)]
                       for _ in range(self.size)]
        diagonal_numbers = [
            [False for _ in range(self.size)] for _ in range(2)]

        for row in range(self.size):
            for col in range(self.size):
                cell = self.board[row][col]
                box = (row // self.height) * self.height + (col // self.width)
                if cell == Sudoku._empty_cell_value:
                    continue
                elif isinstance(cell, int):
                    if row_numbers[row][cell - 1] or col_numbers[col][cell - 1] or box_numbers[box][cell - 1]:
                        return False
                    row_numbers[row][cell - 1] = True
                    col_numbers[col][cell - 1] = True
                    box_numbers[box][cell - 1] = True
        for i in self.diagonal_left_to_right:
            cell = self.board[i[0]][i[1]]
            if cell == Sudoku._empty_cell_value:
                continue
            elif isinstance(cell, int):
                if diagonal_numbers[0][cell - 1]:
                    return False
                diagonal_numbers[0][cell - 1] = True
        for i in self.diagonal_right_to_left:
            cell = self.board[i[0]][i[1]]
            if cell == Sudoku._empty_cell_value:
                continue
            elif isinstance(cell, int):
                if diagonal_numbers[1][cell - 1]:
                    return False
                diagonal_numbers[1][cell - 1] = True
        return True

    def solve(self, raising = False):
        # type: (bool) -> DiagonalSudoku
        solution = _DiagonalSudokuSolver(
            self)._solve() if self.validate() else None
        if solution:
            return solution
        elif raising:
            raise UnsolvableSudoku('No solution found')
        else:
            solution_board = DiagonalSudoku.empty(
                self.width, self.height).board
            solution_difficulty = -2
            return DiagonalSudoku(board=solution_board, difficulty=solution_difficulty)

    def show(self):
        # type: () -> None
        if self.__difficulty == -2:
            print('Puzzle has no solution')
        if self.__difficulty == -1:
            print('Invalid puzzle. Please solve the puzzle (puzzle.solve()), or set a difficulty (puzzle.difficulty())')
        if not self.board:
            print('No solution')
        print(self.__format_board_ascii())

    def show_full(self):
        # type: () -> None
        print(self.__str__())

    def __format_board_ascii(self):
        # type: () -> str
        table = ''
        cell_length = len(str(self.size))
        row_square = []
        format_int = '{0:0' + str(cell_length) + 'd}'

        for i, row in enumerate(self.board):
            if i == 0:
                table += ('+-' + '-' * (cell_length + 1) *
                          self.width) * self.height + '+' + '\n'

            for x in range(len(row)):
                if x != Sudoku._empty_cell_value:
                    if i == x:
                        row_square.append("\033[1m\033[4m{}\033[0m".format(
                            format_int.format(row[x])))
                    elif self.diagonal_right_to_left[i][1] == x:
                        row_square.append("\033[1m\033[4m{}\033[0m".format(
                            format_int.format(row[x])))
                    else:
                        row_square.append(format_int.format(row[x]))
                else:
                    row_square.append(' ' * cell_length)
            table += (('| ' + '{} ' * self.width) *
                      self.height + '|').format(*row_square) + '\n'
            row_square = []

            if i == self.size - 1 or i % self.height == self.height - 1:
                table += ('+-' + '-' * (cell_length + 1) *
                          self.width) * self.height + '+' + '\n'
        return table

    def __str__(self):
        # type: () -> str
        if self.__difficulty == -2:
            difficulty_str = 'INVALID PUZZLE (GIVEN PUZZLE HAS NO SOLUTION)'
        elif self.__difficulty == -1:
            difficulty_str = 'INVALID PUZZLE'
        elif self.__difficulty == 0:
            difficulty_str = 'SOLVED'
        else:
            difficulty_str = '{:.2f}'.format(self.__difficulty)
        return '''
------------------------------------
{}x{} ({}x{}) DIAGONAL SUDOKU PUZZLE
Difficulty: {}
------------------------------------
{}
        '''.format(self.size, self.size, self.width, self.height, difficulty_str, self.__format_board_ascii())


class _DiagonalSudokuSolver(_SudokuSolver):
    def __init__(self, sudoku):
        # type: (DiagonalSudoku) -> None
        super().__init__(sudoku)
        self.diagonal_left_to_right = [(i, i) for i in range(self.size)]
        self.diagonal_right_to_left = [
            (i, j) for i, j in enumerate(range(self.size-1, -1, -1))]

    def _solve(self):
        # type: () -> Optional[DiagonalSudoku]
        blanks = self.__get_blanks()
        blank_count = len(blanks)
        are_blanks_filled = [False for _ in range(blank_count)]
        blank_fillers = self.__calculate_blank_cell_fillers(blanks)
        solution_board = self.__get_solution(
            DiagonalSudoku._copy_board(self.sudoku.board), blanks, blank_fillers, are_blanks_filled)
        solution_difficulty = 0
        if not solution_board:
            return None
        return DiagonalSudoku(self.width, board=solution_board, difficulty=solution_difficulty)

    def __get_blanks(self):
        # type: () -> List[Tuple[int, int]]
        blanks = []
        for i, row in enumerate(self.sudoku.board):
            for j, cell in enumerate(row):
                if cell == Sudoku._empty_cell_value:
                    blanks += [(i, j)]
        return blanks

    def __is_neighbor(self, blank1, blank2):
        # type: (Tuple[int, int], Tuple[int, int]) -> bool
        """
        The function checks whether the cells are neighbors.
        Checks whether they are in one row, in one column,
        in one square whose dimensions are `self.width` and in the same diagonal.
        """
        row1, col1 = blank1
        row2, col2 = blank2
        if row1 == row2 or col1 == col2:
            return True
        grid_row1, grid_col1 = row1 // self.height, col1 // self.width
        grid_row2, grid_col2 = row2 // self.height, col2 // self.width
        if grid_row1 == grid_row2 and grid_col1 == grid_col2:
            return True
        if blank1 in self.diagonal_left_to_right and blank2 in self.diagonal_left_to_right:
            return True
        return blank1 in self.diagonal_right_to_left and blank2 in self.diagonal_right_to_left

    def __calculate_blank_cell_fillers(self, blanks):
        # type: (List[Tuple[int, int]]) -> List[List[List[bool]]]
        sudoku = self.sudoku
        valid_fillers = [[[True for _ in range(self.size)] for _ in range(
            self.size)] for _ in range(self.size)]
        for row, col in blanks:
            for i in range(self.size):
                same_row = sudoku.board[row][i]
                same_col = sudoku.board[i][col]
                if same_row and i != col:
                    valid_fillers[row][col][same_row - 1] = False
                if same_col and i != row:
                    valid_fillers[row][col][same_col - 1] = False

            grid_row, grid_col = row // sudoku.height, col // sudoku.width
            grid_row_start = grid_row * sudoku.height
            grid_col_start = grid_col * sudoku.width
            for y_offset in range(sudoku.height):
                for x_offset in range(sudoku.width):
                    if grid_row_start + y_offset == row and grid_col_start + x_offset == col:
                        continue
                    cell = sudoku.board[grid_row_start +
                                        y_offset][grid_col_start + x_offset]
                    if cell:
                        valid_fillers[row][col][cell - 1] = False

            if (row, col) in self.diagonal_left_to_right:
                for j in self.diagonal_left_to_right:
                    same_diagonal = sudoku.board[row][col]
                    if j == (row, col) or not same_diagonal:
                        continue
                    valid_fillers[row][col][same_diagonal - 1] = False
            elif (row, col) in self.diagonal_right_to_left:
                for j in self.diagonal_right_to_left:
                    same_diagonal = sudoku.board[j[0]][j[1]]
                    if j == (row, col) or not same_diagonal:
                        continue
                    valid_fillers[row][col][same_diagonal - 1] = False
        return valid_fillers

    def __get_solution(self, board, blanks, blank_fillers, are_blanks_filled):
        # type: (List[List[Optional[int]]], List[Tuple[int, int]], List[List[List[bool]]], List[bool]) -> Optional[List[List[int]]]
        min_filler_count = None
        chosen_blank = None
        for i, blank in enumerate(blanks):
            x, y = blank
            if are_blanks_filled[i]:
                continue
            valid_filler_count = sum(blank_fillers[x][y])
            if valid_filler_count == 0:
                return None
            if not min_filler_count or valid_filler_count < min_filler_count:
                min_filler_count = valid_filler_count
                chosen_blank = blank
                chosen_blank_index = i

        if not chosen_blank:
            return cast(List[List[int]], board)

        row, col = chosen_blank
        are_blanks_filled[chosen_blank_index] = True
        revert_list = [False for _ in range(len(blanks))]
        for number in range(self.size):
            if not blank_fillers[row][col][number]:
                continue
            board[row][col] = number + 1
            for i, blank in enumerate(blanks):
                blank_row, blank_col = blank
                if blank == chosen_blank:
                    continue
                if self.__is_neighbor(blank, chosen_blank) and blank_fillers[blank_row][blank_col][number]:
                    blank_fillers[blank_row][blank_col][number] = False
                    revert_list[i] = True
                else:
                    revert_list[i] = False
            solution_board = self.__get_solution(
                board, blanks, blank_fillers, are_blanks_filled)
            if solution_board:
                return solution_board
            for i, blank in enumerate(blanks):
                if revert_list[i]:
                    blank_row, blank_col = blank
                    blank_fillers[blank_row][blank_col][number] = True
        are_blanks_filled[chosen_blank_index] = False
        board[row][col] = Sudoku._empty_cell_value
        return None