1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
import bz2
import gzip
import lzma
import platform
from pathlib import Path
import pytest
from suitesparse_graphblas import (
bool_types,
check_status,
complex_types,
ffi,
grb_types,
lib,
matrix,
real_types,
signed_integer_types,
supports_complex,
unsigned_integer_types,
vector,
)
if platform.system() == "Windows":
pytest.skip("skipping windows-only tests", allow_module_level=True)
from suitesparse_graphblas.io import binary # isort:skip
NULL = ffi.NULL
def _test_elements(T):
if T in bool_types:
return [True, False], [0, 0], [1, 1]
elif T in signed_integer_types:
return [1, -42], [0, 0], [1, 1]
elif T in unsigned_integer_types:
return [1, 42], [0, 0], [1, 1]
elif T in real_types:
return [1.0, -42.42], [0, 0], [1, 1]
elif T in complex_types:
return [complex(1.0, 1.0), complex(42.0, -42.0)], [0, 0], [1, 1]
_element_setters = {
lib.GrB_BOOL: lib.GrB_Matrix_setElement_BOOL,
lib.GrB_INT8: lib.GrB_Matrix_setElement_INT8,
lib.GrB_INT16: lib.GrB_Matrix_setElement_INT16,
lib.GrB_INT32: lib.GrB_Matrix_setElement_INT32,
lib.GrB_INT64: lib.GrB_Matrix_setElement_INT64,
lib.GrB_UINT8: lib.GrB_Matrix_setElement_UINT8,
lib.GrB_UINT16: lib.GrB_Matrix_setElement_UINT16,
lib.GrB_UINT32: lib.GrB_Matrix_setElement_UINT32,
lib.GrB_UINT64: lib.GrB_Matrix_setElement_UINT64,
lib.GrB_FP32: lib.GrB_Matrix_setElement_FP32,
lib.GrB_FP64: lib.GrB_Matrix_setElement_FP64,
}
if supports_complex():
_element_setters.update(
{
lib.GxB_FC32: lib.GxB_Matrix_setElement_FC32,
lib.GxB_FC64: lib.GxB_Matrix_setElement_FC64,
}
)
_eq_ops = {
lib.GrB_BOOL: lib.GrB_EQ_BOOL,
lib.GrB_INT8: lib.GrB_EQ_INT8,
lib.GrB_INT16: lib.GrB_EQ_INT16,
lib.GrB_INT32: lib.GrB_EQ_INT32,
lib.GrB_INT64: lib.GrB_EQ_INT64,
lib.GrB_UINT8: lib.GrB_EQ_UINT8,
lib.GrB_UINT16: lib.GrB_EQ_UINT16,
lib.GrB_UINT32: lib.GrB_EQ_UINT32,
lib.GrB_UINT64: lib.GrB_EQ_UINT64,
lib.GrB_FP32: lib.GrB_EQ_FP32,
lib.GrB_FP64: lib.GrB_EQ_FP64,
}
if supports_complex():
_eq_ops.update(
{
lib.GxB_FC32: lib.GxB_EQ_FC32,
lib.GxB_FC64: lib.GxB_EQ_FC64,
}
)
def test_serialize_matrix():
T = lib.GrB_INT64
A = matrix.new(T, 2, 2)
for args in zip(*_test_elements(T)):
f = _element_setters[T]
check_status(A, f(A[0], *args))
data = matrix.serialize(A)
B = matrix.deserialize(data)
# Test equal
C = matrix.new(lib.GrB_BOOL, 2, 2)
check_status(
C,
lib.GrB_Matrix_eWiseAdd_BinaryOp(C[0], NULL, NULL, _eq_ops[T], A[0], B[0], NULL),
)
assert matrix.nvals(A) == matrix.nvals(B) == matrix.nvals(C)
is_eq = ffi.new("bool*")
check_status(
C,
lib.GrB_Matrix_reduce_BOOL(is_eq, NULL, lib.GrB_LAND_MONOID_BOOL, C[0], NULL),
)
assert is_eq[0]
def test_serialize_vector():
T = lib.GrB_INT64
v = vector.new(T, 3)
check_status(v, lib.GrB_Vector_setElement_INT64(v[0], 2, 0))
check_status(v, lib.GrB_Vector_setElement_INT64(v[0], 10, 1))
data = vector.serialize(v, lib.GxB_COMPRESSION_LZ4HC, level=7)
w = vector.deserialize(data)
# Test equal
x = vector.new(lib.GrB_BOOL, 3)
check_status(
x,
lib.GrB_Vector_eWiseAdd_BinaryOp(x[0], NULL, NULL, _eq_ops[T], v[0], w[0], NULL),
)
assert vector.nvals(v) == vector.nvals(w) == vector.nvals(x)
is_eq = ffi.new("bool*")
check_status(
x,
lib.GrB_Vector_reduce_BOOL(is_eq, NULL, lib.GrB_LAND_MONOID_BOOL, x[0], NULL),
)
assert is_eq[0]
def test_matrix_binfile_read_write(tmp_path):
for opener in (Path.open, gzip.open, bz2.open, lzma.open):
for format in (lib.GxB_BY_ROW, lib.GxB_BY_COL):
for T in grb_types:
for sparsity in (lib.GxB_HYPERSPARSE, lib.GxB_SPARSE, lib.GxB_BITMAP, lib.GxB_FULL):
A = matrix.new(T, 2, 2)
if T is not lib.GxB_FULL:
for args in zip(*_test_elements(T)):
f = _element_setters[T]
check_status(A, f(A[0], *args))
else:
Tone = _test_elements(T)[0][0]
check_status(
A[0],
lib.GrB_assign(
A,
NULL,
NULL,
Tone,
lib.GrB_ALL,
0,
lib.GrB_ALL,
0,
NULL,
),
)
matrix.set_sparsity_control(A, sparsity)
matrix.set_format(A, format)
binfilef = tmp_path / "binfilewrite_test.binfile"
binary.binwrite(A, binfilef, opener=opener)
B = binary.binread(binfilef, opener=opener)
assert matrix.type(A) == matrix.type(B)
assert matrix.nrows(A) == matrix.nrows(B)
assert matrix.ncols(A) == matrix.ncols(B)
assert matrix.hyper_switch(A) == matrix.hyper_switch(B)
assert matrix.bitmap_switch(A) == matrix.bitmap_switch(B)
# assert matrix.sparsity_control(A) == matrix.sparsity_control(B)
C = matrix.new(lib.GrB_BOOL, 2, 2)
check_status(
C,
lib.GrB_Matrix_eWiseAdd_BinaryOp(
C[0], NULL, NULL, _eq_ops[T], A[0], B[0], NULL
),
)
assert matrix.nvals(A) == matrix.nvals(B) == matrix.nvals(C)
is_eq = ffi.new("bool*")
check_status(
C,
lib.GrB_Matrix_reduce_BOOL(
is_eq, NULL, lib.GrB_LAND_MONOID_BOOL, C[0], NULL
),
)
assert is_eq[0]
|