1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
"""
This is a collection of utilities used by the ``svglib`` code module.
"""
import re
from math import acos, ceil, copysign, cos, degrees, fabs, hypot, radians, sin, sqrt
from reportlab.graphics.shapes import mmult, rotate, translate, transformPoint
def split_floats(op, min_num, value):
"""Split `value`, a list of numbers as a string, to a list of float numbers.
Also optionally insert a `l` or `L` operation depending on the operation
and the length of values.
Example: with op='m' and value='10,20 30,40,' the returned value will be
['m', [10.0, 20.0], 'l', [30.0, 40.0]]
"""
floats = [float(seq) for seq in re.findall(r'(-?\d*\.?\d*(?:[eE][+-]?\d+)?)', value) if seq]
res = []
for i in range(0, len(floats), min_num):
if i > 0 and op in {'m', 'M'}:
op = 'l' if op == 'm' else 'L'
res.extend([op, floats[i:i + min_num]])
return res
def split_arc_values(op, value):
float_re = r'(-?\d*\.?\d*(?:[eE][+-]?\d+)?)'
flag_re = r'([1|0])'
# 3 numb, 2 flags, 1 coord pair
a_seq_re = r'[\s,]*'.join([
float_re, float_re, float_re, flag_re, flag_re, float_re, float_re
]) + r'[\s,]*'
res = []
for seq in re.finditer(a_seq_re, value.strip()):
res.extend([op, [float(num) for num in seq.groups()]])
return res
def normalise_svg_path(attr):
"""Normalise SVG path.
This basically introduces operator codes for multi-argument
parameters. Also, it fixes sequences of consecutive M or m
operators to MLLL... and mlll... operators. It adds an empty
list as argument for Z and z only in order to make the resul-
ting list easier to iterate over.
E.g. "M 10 20, M 20 20, L 30 40, 40 40, Z"
-> ['M', [10, 20], 'L', [20, 20], 'L', [30, 40], 'L', [40, 40], 'Z', []]
"""
# operator codes mapped to the minimum number of expected arguments
ops = {
'A': 7, 'a': 7,
'Q': 4, 'q': 4, 'T': 2, 't': 2, 'S': 4, 's': 4,
'M': 2, 'L': 2, 'm': 2, 'l': 2, 'H': 1, 'V': 1,
'h': 1, 'v': 1, 'C': 6, 'c': 6, 'Z': 0, 'z': 0,
}
op_keys = ops.keys()
# do some preprocessing
result = []
groups = re.split('([achlmqstvz])', attr.strip(), flags=re.I)
op = None
for item in groups:
if item.strip() == '':
continue
if item in op_keys:
# fix sequences of M to one M plus a sequence of L operators,
# same for m and l.
if item == 'M' and item == op:
op = 'L'
elif item == 'm' and item == op:
op = 'l'
else:
op = item
if ops[op] == 0: # Z, z
result.extend([op, []])
else:
if op.lower() == 'a':
result.extend(split_arc_values(op, item))
else:
result.extend(split_floats(op, ops[op], item))
op = result[-2] # Remember last op
return result
def convert_quadratic_to_cubic_path(q0, q1, q2):
"""
Convert a quadratic Bezier curve through q0, q1, q2 to a cubic one.
"""
c0 = q0
c1 = (q0[0] + 2 / 3 * (q1[0] - q0[0]), q0[1] + 2 / 3 * (q1[1] - q0[1]))
c2 = (c1[0] + 1 / 3 * (q2[0] - q0[0]), c1[1] + 1 / 3 * (q2[1] - q0[1]))
c3 = q2
return c0, c1, c2, c3
# ***********************************************
# Helper functions for elliptical arc conversion.
# ***********************************************
def vector_angle(u, v):
d = hypot(*u) * hypot(*v)
if d == 0:
return 0
c = (u[0] * v[0] + u[1] * v[1]) / d
if c < -1:
c = -1
elif c > 1:
c = 1
s = u[0] * v[1] - u[1] * v[0]
return degrees(copysign(acos(c), s))
def end_point_to_center_parameters(x1, y1, x2, y2, fA, fS, rx, ry, phi=0):
'''
See http://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes F.6.5
note that we reduce phi to zero outside this routine
'''
rx = fabs(rx)
ry = fabs(ry)
# step 1
if phi:
phi_rad = radians(phi)
sin_phi = sin(phi_rad)
cos_phi = cos(phi_rad)
tx = 0.5 * (x1 - x2)
ty = 0.5 * (y1 - y2)
x1d = cos_phi * tx - sin_phi * ty
y1d = sin_phi * tx + cos_phi * ty
else:
x1d = 0.5 * (x1 - x2)
y1d = 0.5 * (y1 - y2)
# step 2
# we need to calculate
# (rx*rx*ry*ry-rx*rx*y1d*y1d-ry*ry*x1d*x1d)
# -----------------------------------------
# (rx*rx*y1d*y1d+ry*ry*x1d*x1d)
#
# that is equivalent to
#
# rx*rx*ry*ry
# = ----------------------------- - 1
# (rx*rx*y1d*y1d+ry*ry*x1d*x1d)
#
# 1
# = -------------------------------- - 1
# x1d*x1d/(rx*rx) + y1d*y1d/(ry*ry)
#
# = 1/r - 1
#
# it turns out r is what they recommend checking
# for the negative radicand case
r = x1d * x1d / (rx * rx) + y1d * y1d / (ry * ry)
if r > 1:
rr = sqrt(r)
rx *= rr
ry *= rr
r = x1d * x1d / (rx * rx) + y1d * y1d / (ry * ry)
r = 1 / r - 1
elif r != 0:
r = 1 / r - 1
if -1e-10 < r < 0:
r = 0
r = sqrt(r)
if fA == fS:
r = -r
cxd = (r * rx * y1d) / ry
cyd = -(r * ry * x1d) / rx
# step 3
if phi:
cx = cos_phi * cxd - sin_phi * cyd + 0.5 * (x1 + x2)
cy = sin_phi * cxd + cos_phi * cyd + 0.5 * (y1 + y2)
else:
cx = cxd + 0.5 * (x1 + x2)
cy = cyd + 0.5 * (y1 + y2)
# step 4
theta1 = vector_angle((1, 0), ((x1d - cxd) / rx, (y1d - cyd) / ry))
dtheta = vector_angle(
((x1d - cxd) / rx, (y1d - cyd) / ry),
((-x1d - cxd) / rx, (-y1d - cyd) / ry)
) % 360
if fS == 0 and dtheta > 0:
dtheta -= 360
elif fS == 1 and dtheta < 0:
dtheta += 360
return cx, cy, rx, ry, -theta1, -dtheta
def bezier_arc_from_centre(cx, cy, rx, ry, start_ang=0, extent=90):
if abs(extent) <= 90:
nfrag = 1
frag_angle = extent
else:
nfrag = ceil(abs(extent) / 90)
frag_angle = extent / nfrag
if frag_angle == 0:
return []
frag_rad = radians(frag_angle)
half_rad = frag_rad * 0.5
kappa = abs(4 / 3 * (1 - cos(half_rad)) / sin(half_rad))
if frag_angle < 0:
kappa = -kappa
point_list = []
theta1 = radians(start_ang)
start_rad = theta1 + frag_rad
c1 = cos(theta1)
s1 = sin(theta1)
for i in range(nfrag):
c0 = c1
s0 = s1
theta1 = start_rad + i * frag_rad
c1 = cos(theta1)
s1 = sin(theta1)
point_list.append((cx + rx * c0,
cy - ry * s0,
cx + rx * (c0 - kappa * s0),
cy - ry * (s0 + kappa * c0),
cx + rx * (c1 + kappa * s1),
cy - ry * (s1 - kappa * c1),
cx + rx * c1,
cy - ry * s1))
return point_list
def bezier_arc_from_end_points(x1, y1, rx, ry, phi, fA, fS, x2, y2):
if (x1 == x2 and y1 == y2):
# From https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes:
# If the endpoints (x1, y1) and (x2, y2) are identical, then this is
# equivalent to omitting the elliptical arc segment entirely.
return []
if phi:
# Our box bezier arcs can't handle rotations directly
# move to a well known point, eliminate phi and transform the other point
mx = mmult(rotate(-phi), translate(-x1, -y1))
tx2, ty2 = transformPoint(mx, (x2, y2))
# Convert to box form in unrotated coords
cx, cy, rx, ry, start_ang, extent = end_point_to_center_parameters(
0, 0, tx2, ty2, fA, fS, rx, ry
)
bp = bezier_arc_from_centre(cx, cy, rx, ry, start_ang, extent)
# Re-rotate by the desired angle and add back the translation
mx = mmult(translate(x1, y1), rotate(phi))
res = []
for x1, y1, x2, y2, x3, y3, x4, y4 in bp:
res.append(
transformPoint(mx, (x1, y1)) + transformPoint(mx, (x2, y2)) +
transformPoint(mx, (x3, y3)) + transformPoint(mx, (x4, y4))
)
return res
else:
cx, cy, rx, ry, start_ang, extent = end_point_to_center_parameters(
x1, y1, x2, y2, fA, fS, rx, ry
)
return bezier_arc_from_centre(cx, cy, rx, ry, start_ang, extent)
|