File: test_basis_sets_O2.py

package info (click to toggle)
python-symfc 1.5.4-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,980 kB
  • sloc: python: 10,485; makefile: 12
file content (127 lines) | stat: -rw-r--r-- 4,797 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Tests of FCBasisSetO2."""

from __future__ import annotations

from pathlib import Path

import numpy as np
import pytest

from symfc.basis_sets import FCBasisSetO2
from symfc.solvers.solver_O2 import FCSolverO2
from symfc.utils.utils import SymfcAtoms

cwd = Path(__file__).parent


def test_fc_basis_set_o2():
    """Test symmetry adapted basis sets of FCBasisSetO2."""
    lattice = np.array([[2, 0, 0], [0, 2, 0], [0, 0, 2]])
    positions = np.array([[0, 0, 0], [0.5, 0.5, 0.5]])
    numbers = [1, 1]
    supercell = SymfcAtoms(cell=lattice, scaled_positions=positions, numbers=numbers)
    sbs = FCBasisSetO2(supercell, log_level=1).run()

    np.testing.assert_allclose(
        np.sort(sbs.basis_set), [[-np.sqrt(2) / 2], [np.sqrt(2) / 2]]
    )

    comp_mat = sbs.compression_matrix
    proj = comp_mat @ comp_mat.T
    np.testing.assert_allclose(proj.data, [1.0 / 6.0] * proj.size)

    ref_col = [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0]
    ref_row = [0, 4, 8, 9, 13, 17, 18, 22, 26, 27, 31, 35]
    np.testing.assert_array_equal(comp_mat.tocoo().col, ref_col)
    np.testing.assert_array_equal(comp_mat.tocoo().row, ref_row)

    compact_comp_mat = sbs.compact_compression_matrix
    compact_proj = compact_comp_mat @ compact_comp_mat.T
    np.testing.assert_allclose(compact_proj.data, [1.0 / 6.0] * compact_proj.size)

    ref_col = [0, 0, 0, 1, 1, 1]
    ref_row = [0, 4, 8, 9, 13, 17]
    np.testing.assert_array_equal(compact_comp_mat.tocoo().col, ref_col)
    np.testing.assert_array_equal(compact_comp_mat.tocoo().row, ref_row)

    assert np.linalg.norm(sbs.basis_set) == pytest.approx(1.0)


def test_fc_basis_set_o2_nacl222(cell_nacl_222: SymfcAtoms):
    """Test symmetry adapted basis sets of FCBasisSetO2 by nacl222."""
    sbs = FCBasisSetO2(cell_nacl_222, log_level=1).run()

    assert sbs.basis_set.shape[0] == 33
    assert sbs.basis_set.shape[1] == 31
    compact_basis = sbs.compact_compression_matrix @ sbs.basis_set
    assert np.linalg.norm(compact_basis) ** 2 == pytest.approx(0.96875)

    sbs = FCBasisSetO2(cell_nacl_222, cutoff=5.0, log_level=1).run()
    assert sbs.basis_set.shape[0] == 12
    assert sbs.basis_set.shape[1] == 10
    compact_basis = sbs.compact_compression_matrix @ sbs.basis_set
    assert np.linalg.norm(compact_basis) ** 2 == pytest.approx(0.3125)


def test_fc_basis_set_o2_wurtzite332(cell_wurtzite_332: SymfcAtoms):
    """Test symmetry adapted basis sets of FCBasisSetO2 by wurtzite332."""
    sbs = FCBasisSetO2(cell_wurtzite_332, log_level=1).run()

    assert sbs.basis_set.shape[0] == 130
    assert sbs.basis_set.shape[1] == 126
    compact_basis = sbs.compact_compression_matrix @ sbs.basis_set
    assert np.linalg.norm(compact_basis) ** 2 == pytest.approx(7)

    sbs = FCBasisSetO2(cell_wurtzite_332, cutoff=5.0, log_level=1).run()
    assert sbs.basis_set.shape[0] == 49
    assert sbs.basis_set.shape[1] == 45
    compact_basis = sbs.compact_compression_matrix @ sbs.basis_set
    assert np.linalg.norm(compact_basis) ** 2 == pytest.approx(2.5)


@pytest.mark.parametrize("is_compact_fc", [True, False])
def test_fc2_NaCl_222(
    ph_nacl_222: tuple[SymfcAtoms, np.ndarray, np.ndarray], is_compact_fc: bool
):
    """Test force constants by NaCl 64 atoms supercell."""
    _assert_fc(ph_nacl_222, "NaCl_222", is_compact_fc)


@pytest.mark.parametrize("is_compact_fc", [True, False])
def test_fc2_SnO2_223(
    ph_sno2_223: tuple[SymfcAtoms, np.ndarray, np.ndarray], is_compact_fc: bool
):
    """Test force constants by SnO2 72 atoms supercell."""
    _assert_fc(ph_sno2_223, "SnO2_223", is_compact_fc)


def test_fc2_SiO2_221(ph_sio2_221: tuple[SymfcAtoms, np.ndarray, np.ndarray]):
    """Test force constants by SiO2 36 atoms supercell."""
    _assert_fc(ph_sio2_221, "SiO2_221")


def test_fc2_GaN_442(ph_gan_442: tuple[SymfcAtoms, np.ndarray, np.ndarray]):
    """Test force constants by GaN 128 atoms supercell."""
    _assert_fc(ph_gan_442, "GaN_442")


def test_fc2_GaN_222(ph_gan_222: tuple[SymfcAtoms, np.ndarray, np.ndarray]):
    """Test force constants by GaN 32 atoms supercell."""
    _assert_fc(ph_gan_222, "GaN_222")


def _assert_fc(
    ph: tuple[SymfcAtoms, np.ndarray, np.ndarray], name: str, is_compact_fc: bool = True
):
    supercell, displacements, forces = ph
    basis_set = FCBasisSetO2(supercell, log_level=1).run()
    print(basis_set)
    fc_solver = FCSolverO2(basis_set, log_level=1).solve(displacements, forces)
    if is_compact_fc:
        fc = fc_solver.compact_fc
        # np.savetxt(f"compact_fc_{name}.xz", fc.ravel())
        fc_ref = np.loadtxt(cwd / ".." / f"compact_fc_{name}.xz").reshape(fc.shape)
    else:
        fc = fc_solver.full_fc
        fc_ref = np.loadtxt(cwd / ".." / f"full_fc_{name}.xz").reshape(fc.shape)
    np.testing.assert_allclose(fc, fc_ref, atol=1e-6)