1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
.. _quickstart:
==========
Quickstart
==========
Eager to get started?
This page gives a good introduction in how to get started with Tablib.
This assumes you already have Tablib installed.
If you do not, head over to the :ref:`Installation <install>` section.
First, make sure that:
* Tablib is :ref:`installed <install>`
* Tablib is :ref:`up-to-date <updates>`
Let's get started with some simple use cases and examples.
------------------
Creating a Dataset
------------------
A :class:`Dataset <tablib.Dataset>` is nothing more than what its name implies—a set of data.
Creating your own instance of the :class:`tablib.Dataset` object is simple. ::
data = tablib.Dataset()
You can now start filling this :class:`Dataset <tablib.Dataset>` object with data.
.. admonition:: Example Context
From here on out, if you see ``data``, assume that it's a fresh
:class:`Dataset <tablib.Dataset>` object.
-----------
Adding Rows
-----------
Let's say you want to collect a simple list of names. ::
# collection of names
names = ['Kenneth Reitz', 'Bessie Monke']
for name in names:
# split name appropriately
fname, lname = name.split()
# add names to Dataset
data.append([fname, lname])
You can get a nice, Pythonic view of the dataset at any time with :class:`Dataset.dict`::
>>> data.dict
[('Kenneth', 'Reitz'), ('Bessie', 'Monke')]
--------------
Adding Headers
--------------
It's time to enhance our :class:`Dataset` by giving our columns some titles.
To do so, set :class:`Dataset.headers`. ::
data.headers = ['First Name', 'Last Name']
Now our data looks a little different. ::
>>> data.dict
[{'Last Name': 'Reitz', 'First Name': 'Kenneth'},
{'Last Name': 'Monke', 'First Name': 'Bessie'}]
--------------
Adding Columns
--------------
Now that we have a basic :class:`Dataset` in place, let's add a column of **ages** to it. ::
data.append_col([22, 20], header='Age')
Let's view the data now. ::
>>> data.dict
[{'Last Name': 'Reitz', 'First Name': 'Kenneth', 'Age': 22},
{'Last Name': 'Monke', 'First Name': 'Bessie', 'Age': 20}]
It's that easy.
--------------
Importing Data
--------------
Creating a :class:`tablib.Dataset` object by importing a pre-existing file is simple. ::
with open('data.csv', 'r') as fh:
imported_data = Dataset().load(fh)
This detects what sort of data is being passed in, and uses an appropriate formatter to do the import. So you can import from a variety of different file types.
.. admonition:: Source without headers
When the format is :class:`csv <Dataset.csv>`, :class:`tsv <Dataset.tsv>`, :class:`dbf <Dataset.dbf>`, :class:`xls <Dataset.xls>` or :class:`xlsx <Dataset.xlsx>`, and the data source does not have headers, the import should be done as follows ::
with open('data.csv', 'r') as fh:
imported_data = Dataset().load(fh, headers=False)
--------------
Exporting Data
--------------
Tablib's killer feature is the ability to export your :class:`Dataset` objects into a number of formats.
**Comma-Separated Values** ::
>>> data.export('csv')
Last Name,First Name,Age
Reitz,Kenneth,22
Monke,Bessie,20
**JavaScript Object Notation** ::
>>> data.export('json')
[{"Last Name": "Reitz", "First Name": "Kenneth", "Age": 22}, {"Last Name": "Monke", "First Name": "Bessie", "Age": 20}]
**YAML Ain't Markup Language** ::
>>> data.export('yaml')
- {Age: 22, First Name: Kenneth, Last Name: Reitz}
- {Age: 20, First Name: Bessie, Last Name: Monke}
**Microsoft Excel** ::
>>> data.export('xls')
<redacted binary data>
**Pandas DataFrame** ::
>>> data.export('df')
First Name Last Name Age
0 Kenneth Reitz 22
1 Bessie Monke 21
------------------------
Selecting Rows & Columns
------------------------
You can slice and dice your data, just like a standard Python list. ::
>>> data[0]
('Kenneth', 'Reitz', 22)
>>> data[0:2]
[('Kenneth', 'Reitz', 22), ('Bessie', 'Monke', 20)]
You can also access a row using its index without slicing. ::
>>> data.get(0)
('Kenneth', 'Reitz', 22)
If we had a set of data consisting of thousands of rows,
it could be useful to get a list of values in a column.
To do so, we access the :class:`Dataset` as if it were a standard Python dictionary. ::
>>> data['First Name']
['Kenneth', 'Bessie']
You can also access the column using its index. ::
>>> data.headers
['Last Name', 'First Name', 'Age']
>>> data.get_col(1)
['Kenneth', 'Bessie']
Let's find the average age. ::
>>> ages = data['Age']
>>> float(sum(ages)) / len(ages)
21.0
-----------------------
Removing Rows & Columns
-----------------------
It's easier than you could imagine. Delete a column::
>>> del data['Col Name']
Delete a range of rows::
>>> del data[0:12]
==============
Advanced Usage
==============
This part of the documentation services to give you an idea that are otherwise hard to extract from the :ref:`API Documentation <api>`.
And now for something completely different.
.. _dyncols:
---------------
Dynamic Columns
---------------
Thanks to Josh Ourisman, Tablib now supports adding dynamic columns.
A dynamic column is a single callable object (*e.g.* a function).
Let's add a dynamic column to our :class:`Dataset` object.
In this example, we have a function that generates a random grade for our students. ::
import random
def random_grade(row):
"""Returns a random integer for entry."""
return (random.randint(60,100)/100.0)
data.append_col(random_grade, header='Grade')
Let's have a look at our data. ::
>>> data.export('yaml')
- {Age: 22, First Name: Kenneth, Grade: 0.6, Last Name: Reitz}
- {Age: 20, First Name: Bessie, Grade: 0.75, Last Name: Monke}
Let's remove that column. ::
>>> del data['Grade']
When you add a dynamic column, the first argument that is passed in to the given callable is the current data row.
You can use this to perform calculations against your data row.
For example, we can use the data available in the row to guess the gender of a student. ::
def guess_gender(row):
"""Calculates gender of given student data row."""
m_names = ('Kenneth', 'Mike', 'Yuri')
f_names = ('Bessie', 'Samantha', 'Heather')
name = row[0]
if name in m_names:
return 'Male'
elif name in f_names:
return 'Female'
else:
return 'Unknown'
Adding this function to our dataset as a dynamic column would result in: ::
>>> data.export('yaml')
- {Age: 22, First Name: Kenneth, Gender: Male, Last Name: Reitz}
- {Age: 20, First Name: Bessie, Gender: Female, Last Name: Monke}
When you add new rows to a dataset that contains dynamic columns, you should
either provide all values in the row, or only the non-dynamic values and then
the dynamic values will be automatically generated using the function initially
provided for the column calculation.
..versionchanged:: 3.6.0
In older versions, you could only add new rows with fully-populated rows,
including dynamic columns.
.. _tags:
----------------------------
Filtering Datasets with Tags
----------------------------
When constructing a :class:`Dataset` object,
you can add tags to rows by specifying the ``tags`` parameter.
This allows you to filter your :class:`Dataset` later.
This can be useful to separate rows of data based on arbitrary criteria
(*e.g.* origin) that you don't want to include in your :class:`Dataset`.
Let's tag some students. ::
students = tablib.Dataset()
students.headers = ['first', 'last']
students.rpush(['Kenneth', 'Reitz'], tags=['male', 'technical'])
students.rpush(['Daniel', 'Dupont'], tags=['male', 'creative' ])
students.rpush(['Bessie', 'Monke'], tags=['female', 'creative'])
Now that we have extra meta-data on our rows, we can easily filter our :class:`Dataset`. Let's just see Female students. ::
>>> students.filter(['female']).yaml
- {first: Bessie, Last: Monke}
By default, when you pass a list of tags you get filter type or. ::
>>> students.filter(['female', 'creative']).yaml
- {first: Daniel, Last: Dupont}
- {first: Bessie, Last: Monke}
Using chaining you can get a filter type and. ::
>>> students.filter(['female']).filter(['creative']).yaml
- {first: Bessie, Last: Monke}
It's that simple. The original :class:`Dataset` is untouched.
Open an Excel Workbook and read first sheet
-------------------------------------------
Open an Excel 2007 and later workbook with a single sheet (or a workbook with multiple sheets but you just want the first sheet). ::
data = tablib.Dataset()
with open('my_excel_file.xlsx', 'rb') as fh:
data.load(fh, 'xlsx')
print(data)
Excel Workbook With Multiple Sheets
------------------------------------
When dealing with a large number of :class:`Datasets <Dataset>` in spreadsheet format,
it's quite common to group multiple spreadsheets into a single Excel file, known as a Workbook.
Tablib makes it extremely easy to build workbooks with the handy :class:`Databook` class.
Let's say we have 3 different :class:`Datasets <Dataset>`.
All we have to do is add them to a :class:`Databook` object... ::
book = tablib.Databook((data1, data2, data3))
... and export to Excel just like :class:`Datasets <Dataset>`. ::
with open('students.xls', 'wb') as f:
f.write(book.export('xls'))
The resulting ``students.xls`` file will contain a separate spreadsheet for each :class:`Dataset` object in the :class:`Databook`.
.. admonition:: Binary Warning
Make sure to open the output file in binary mode.
.. _separators:
----------
Separators
----------
When constructing a spreadsheet,
it's often useful to create a blank row containing information on the upcoming data. So,
::
daniel_tests = [
('11/24/09', 'Math 101 Mid-term Exam', 56.),
('05/24/10', 'Math 101 Final Exam', 62.)
]
suzie_tests = [
('11/24/09', 'Math 101 Mid-term Exam', 56.),
('05/24/10', 'Math 101 Final Exam', 62.)
]
# Create new dataset
tests = tablib.Dataset()
tests.headers = ['Date', 'Test Name', 'Grade']
# Daniel's Tests
tests.append_separator('Daniel\'s Scores')
for test_row in daniel_tests:
tests.append(test_row)
# Susie's Tests
tests.append_separator('Susie\'s Scores')
for test_row in suzie_tests:
tests.append(test_row)
# Write spreadsheet to disk
with open('grades.xls', 'wb') as f:
f.write(tests.export('xls'))
The resulting **tests.xls** will have the following layout:
Daniel's Scores:
* '11/24/09', 'Math 101 Mid-term Exam', 56.
* '05/24/10', 'Math 101 Final Exam', 62.
Suzie's Scores:
* '11/24/09', 'Math 101 Mid-term Exam', 56.
* '05/24/10', 'Math 101 Final Exam', 62.
.. admonition:: Format Support
At this time, only :class:`Excel <Dataset.xls>` output supports separators.
----
Now, go check out the :ref:`API Documentation <api>` or begin :ref:`Tablib Development <development>`.
|