1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
# -*- coding: utf-8 -*-
# Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import collections
import contextlib
import logging
import os
import random
import sys
import threading
import time
logging.basicConfig(level=logging.ERROR)
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir,
os.pardir))
sys.path.insert(0, top_dir)
from zake import fake_client
from taskflow import exceptions as excp
from taskflow.jobs import backends
from taskflow.utils import threading_utils
# In this example we show how a jobboard can be used to post work for other
# entities to work on. This example creates a set of jobs using one producer
# thread (typically this would be split across many machines) and then having
# other worker threads with their own jobboards select work using a given
# filters [red/blue] and then perform that work (and consuming or abandoning
# the job after it has been completed or failed).
# Things to note:
# - No persistence layer is used (or logbook), just the job details are used
# to determine if a job should be selected by a worker or not.
# - This example runs in a single process (this is expected to be atypical
# but this example shows that it can be done if needed, for testing...)
# - The iterjobs(), claim(), consume()/abandon() worker workflow.
# - The post() producer workflow.
SHARED_CONF = {
'path': "/taskflow/jobs",
'board': 'zookeeper',
}
# How many workers and producers of work will be created (as threads).
PRODUCERS = 3
WORKERS = 5
# How many units of work each producer will create.
PRODUCER_UNITS = 10
# How many units of work are expected to be produced (used so workers can
# know when to stop running and shutdown, typically this would not be a
# a value but we have to limit this example's execution time to be less than
# infinity).
EXPECTED_UNITS = PRODUCER_UNITS * PRODUCERS
# Delay between producing/consuming more work.
WORKER_DELAY, PRODUCER_DELAY = (0.5, 0.5)
# To ensure threads don't trample other threads output.
STDOUT_LOCK = threading.Lock()
def dispatch_work(job):
# This is where the jobs contained work *would* be done
time.sleep(1.0)
def safe_print(name, message, prefix=""):
with STDOUT_LOCK:
if prefix:
print("%s %s: %s" % (prefix, name, message))
else:
print("%s: %s" % (name, message))
def worker(ident, client, consumed):
# Create a personal board (using the same client so that it works in
# the same process) and start looking for jobs on the board that we want
# to perform.
name = "W-%s" % (ident)
safe_print(name, "started")
claimed_jobs = 0
consumed_jobs = 0
abandoned_jobs = 0
with backends.backend(name, SHARED_CONF.copy(), client=client) as board:
while len(consumed) != EXPECTED_UNITS:
favorite_color = random.choice(['blue', 'red'])
for job in board.iterjobs(ensure_fresh=True, only_unclaimed=True):
# See if we should even bother with it...
if job.details.get('color') != favorite_color:
continue
safe_print(name, "'%s' [attempting claim]" % (job))
try:
board.claim(job, name)
claimed_jobs += 1
safe_print(name, "'%s' [claimed]" % (job))
except (excp.NotFound, excp.UnclaimableJob):
safe_print(name, "'%s' [claim unsuccessful]" % (job))
else:
try:
dispatch_work(job)
board.consume(job, name)
safe_print(name, "'%s' [consumed]" % (job))
consumed_jobs += 1
consumed.append(job)
except Exception:
board.abandon(job, name)
abandoned_jobs += 1
safe_print(name, "'%s' [abandoned]" % (job))
time.sleep(WORKER_DELAY)
safe_print(name,
"finished (claimed %s jobs, consumed %s jobs,"
" abandoned %s jobs)" % (claimed_jobs, consumed_jobs,
abandoned_jobs), prefix=">>>")
def producer(ident, client):
# Create a personal board (using the same client so that it works in
# the same process) and start posting jobs on the board that we want
# some entity to perform.
name = "P-%s" % (ident)
safe_print(name, "started")
with backends.backend(name, SHARED_CONF.copy(), client=client) as board:
for i in range(0, PRODUCER_UNITS):
job_name = "%s-%s" % (name, i)
details = {
'color': random.choice(['red', 'blue']),
}
job = board.post(job_name, book=None, details=details)
safe_print(name, "'%s' [posted]" % (job))
time.sleep(PRODUCER_DELAY)
safe_print(name, "finished", prefix=">>>")
def main():
# TODO(harlowja): Hack to make eventlet work right, remove when the
# following is fixed: https://github.com/eventlet/eventlet/issues/230
from taskflow.utils import eventlet_utils as _eu # noqa
try:
import eventlet as _eventlet # noqa
except ImportError:
pass
with contextlib.closing(fake_client.FakeClient()) as c:
created = []
for i in range(0, PRODUCERS):
p = threading_utils.daemon_thread(producer, i + 1, c)
created.append(p)
p.start()
consumed = collections.deque()
for i in range(0, WORKERS):
w = threading_utils.daemon_thread(worker, i + 1, c, consumed)
created.append(w)
w.start()
while created:
t = created.pop()
t.join()
# At the end there should be nothing leftover, let's verify that.
board = backends.fetch('verifier', SHARED_CONF.copy(), client=c)
board.connect()
with contextlib.closing(board):
if board.job_count != 0 or len(consumed) != EXPECTED_UNITS:
return 1
return 0
if __name__ == "__main__":
sys.exit(main())
|