File: tox_conductor.py

package info (click to toggle)
python-taskflow 5.12.0-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 3,564 kB
  • sloc: python: 28,241; sh: 269; makefile: 24
file content (242 lines) | stat: -rw-r--r-- 8,472 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# -*- coding: utf-8 -*-

#    Copyright (C) 2014 Yahoo! Inc. All Rights Reserved.
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.

import contextlib
import itertools
import logging
import os
import shutil
import socket
import sys
import tempfile
import threading
import time

logging.basicConfig(level=logging.ERROR)

top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
                                       os.pardir,
                                       os.pardir))
sys.path.insert(0, top_dir)

from oslo_utils import timeutils
from oslo_utils import uuidutils
from zake import fake_client

from taskflow.conductors import backends as conductors
from taskflow import engines
from taskflow.jobs import backends as boards
from taskflow.patterns import linear_flow
from taskflow.persistence import backends as persistence
from taskflow.persistence import models
from taskflow import task
from taskflow.utils import threading_utils

# INTRO: This examples shows how a worker/producer can post desired work (jobs)
# to a jobboard and a conductor can consume that work (jobs) from that jobboard
# and execute those jobs in a reliable & async manner (for example, if the
# conductor were to crash then the job will be released back onto the jobboard
# and another conductor can attempt to finish it, from wherever that job last
# left off).
#
# In this example a in-memory jobboard (and in-memory storage) is created and
# used that simulates how this would be done at a larger scale (it is an
# example after all).

# Restrict how long this example runs for...
RUN_TIME = 5
REVIEW_CREATION_DELAY = 0.5
SCAN_DELAY = 0.1
NAME = "%s_%s" % (socket.getfqdn(), os.getpid())

# This won't really use zookeeper but will use a local version of it using
# the zake library that mimics an actual zookeeper cluster using threads and
# an in-memory data structure.
JOBBOARD_CONF = {
    'board': 'zookeeper://localhost?path=/taskflow/tox/jobs',
}


class RunReview(task.Task):
    # A dummy task that clones the review and runs tox...

    def _clone_review(self, review, temp_dir):
        print("Cloning review '%s' into %s" % (review['id'], temp_dir))

    def _run_tox(self, temp_dir):
        print("Running tox in %s" % temp_dir)

    def execute(self, review, temp_dir):
        self._clone_review(review, temp_dir)
        self._run_tox(temp_dir)


class MakeTempDir(task.Task):
    # A task that creates and destroys a temporary dir (on failure).
    #
    # It provides the location of the temporary dir for other tasks to use
    # as they see fit.

    default_provides = 'temp_dir'

    def execute(self):
        return tempfile.mkdtemp()

    def revert(self, *args, **kwargs):
        temp_dir = kwargs.get(task.REVERT_RESULT)
        if temp_dir:
            shutil.rmtree(temp_dir)


class CleanResources(task.Task):
    # A task that cleans up any workflow resources.

    def execute(self, temp_dir):
        print("Removing %s" % temp_dir)
        shutil.rmtree(temp_dir)


def review_iter():
    """Makes reviews (never-ending iterator/generator)."""
    review_id_gen = itertools.count(0)
    while True:
        review_id = next(review_id_gen)
        review = {
            'id': review_id,
        }
        yield review


# The reason this is at the module namespace level is important, since it must
# be accessible from a conductor dispatching an engine, if it was a lambda
# function for example, it would not be reimportable and the conductor would
# be unable to reference it when creating the workflow to run.
def create_review_workflow():
    """Factory method used to create a review workflow to run."""
    f = linear_flow.Flow("tester")
    f.add(
        MakeTempDir(name="maker"),
        RunReview(name="runner"),
        CleanResources(name="cleaner")
    )
    return f


def generate_reviewer(client, saver, name=NAME):
    """Creates a review producer thread with the given name prefix."""
    real_name = "%s_reviewer" % name
    no_more = threading.Event()
    jb = boards.fetch(real_name, JOBBOARD_CONF,
                      client=client, persistence=saver)

    def make_save_book(saver, review_id):
        # Record what we want to happen (sometime in the future).
        book = models.LogBook("book_%s" % review_id)
        detail = models.FlowDetail("flow_%s" % review_id,
                                   uuidutils.generate_uuid())
        book.add(detail)
        # Associate the factory method we want to be called (in the future)
        # with the book, so that the conductor will be able to call into
        # that factory to retrieve the workflow objects that represent the
        # work.
        #
        # These args and kwargs *can* be used to save any specific parameters
        # into the factory when it is being called to create the workflow
        # objects (typically used to tell a factory how to create a unique
        # workflow that represents this review).
        factory_args = ()
        factory_kwargs = {}
        engines.save_factory_details(detail, create_review_workflow,
                                     factory_args, factory_kwargs)
        with contextlib.closing(saver.get_connection()) as conn:
            conn.save_logbook(book)
            return book

    def run():
        """Periodically publishes 'fake' reviews to analyze."""
        jb.connect()
        review_generator = review_iter()
        with contextlib.closing(jb):
            while not no_more.is_set():
                review = next(review_generator)
                details = {
                    'store': {
                        'review': review,
                    },
                }
                job_name = "%s_%s" % (real_name, review['id'])
                print("Posting review '%s'" % review['id'])
                jb.post(job_name,
                        book=make_save_book(saver, review['id']),
                        details=details)
                time.sleep(REVIEW_CREATION_DELAY)

    # Return the unstarted thread, and a callback that can be used
    # shutdown that thread (to avoid running forever).
    return (threading_utils.daemon_thread(target=run), no_more.set)


def generate_conductor(client, saver, name=NAME):
    """Creates a conductor thread with the given name prefix."""
    real_name = "%s_conductor" % name
    jb = boards.fetch(name, JOBBOARD_CONF,
                      client=client, persistence=saver)
    conductor = conductors.fetch("blocking", real_name, jb,
                                 engine='parallel', wait_timeout=SCAN_DELAY)

    def run():
        jb.connect()
        with contextlib.closing(jb):
            conductor.run()

    # Return the unstarted thread, and a callback that can be used
    # shutdown that thread (to avoid running forever).
    return (threading_utils.daemon_thread(target=run), conductor.stop)


def main():
    # Need to share the same backend, so that data can be shared...
    persistence_conf = {
        'connection': 'memory',
    }
    saver = persistence.fetch(persistence_conf)
    with contextlib.closing(saver.get_connection()) as conn:
        # This ensures that the needed backend setup/data directories/schema
        # upgrades and so on... exist before they are attempted to be used...
        conn.upgrade()
    fc1 = fake_client.FakeClient()
    # Done like this to share the same client storage location so the correct
    # zookeeper features work across clients...
    fc2 = fake_client.FakeClient(storage=fc1.storage)
    entities = [
        generate_reviewer(fc1, saver),
        generate_conductor(fc2, saver),
    ]
    for t, stopper in entities:
        t.start()
    try:
        watch = timeutils.StopWatch(duration=RUN_TIME)
        watch.start()
        while not watch.expired():
            time.sleep(0.1)
    finally:
        for t, stopper in reversed(entities):
            stopper()
            t.join()


if __name__ == '__main__':
    main()