1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
# Copyright (C) 2013 Yahoo! Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import contextlib
import logging
import os
import sys
logging.basicConfig(level=logging.ERROR)
self_dir = os.path.abspath(os.path.dirname(__file__))
top_dir = os.path.abspath(os.path.join(os.path.dirname(__file__),
os.pardir,
os.pardir))
sys.path.insert(0, top_dir)
sys.path.insert(0, self_dir)
from oslo_utils import uuidutils
import taskflow.engines
from taskflow.patterns import linear_flow as lf
from taskflow.persistence import models
from taskflow import task
import example_utils as eu # noqa
# INTRO: In this example linear_flow is used to group three tasks, one which
# will suspend the future work the engine may do. This suspend engine is then
# discarded and the workflow is reloaded from the persisted data and then the
# workflow is resumed from where it was suspended. This allows you to see how
# to start an engine, have a task stop the engine from doing future work (if
# a multi-threaded engine is being used, then the currently active work is not
# preempted) and then resume the work later.
#
# Usage:
#
# With a filesystem directory as backend
#
# python taskflow/examples/resume_from_backend.py
#
# With ZooKeeper as backend
#
# python taskflow/examples/resume_from_backend.py \
# zookeeper://127.0.0.1:2181/taskflow/resume_from_backend/
# UTILITY FUNCTIONS #########################################
def print_task_states(flowdetail, msg):
eu.print_wrapped(msg)
print("Flow '{}' state: {}".format(flowdetail.name, flowdetail.state))
# Sort by these so that our test validation doesn't get confused by the
# order in which the items in the flow detail can be in.
items = sorted((td.name, td.version, td.state, td.results)
for td in flowdetail)
for item in items:
print(" %s==%s: %s, result=%s" % item)
def find_flow_detail(backend, lb_id, fd_id):
conn = backend.get_connection()
lb = conn.get_logbook(lb_id)
return lb.find(fd_id)
# CREATE FLOW ###############################################
class InterruptTask(task.Task):
def execute(self):
# DO NOT TRY THIS AT HOME
engine.suspend()
class TestTask(task.Task):
def execute(self):
print('executing %s' % self)
return 'ok'
def flow_factory():
return lf.Flow('resume from backend example').add(
TestTask(name='first'),
InterruptTask(name='boom'),
TestTask(name='second'))
# INITIALIZE PERSISTENCE ####################################
with eu.get_backend() as backend:
# Create a place where the persistence information will be stored.
book = models.LogBook("example")
flow_detail = models.FlowDetail("resume from backend example",
uuid=uuidutils.generate_uuid())
book.add(flow_detail)
with contextlib.closing(backend.get_connection()) as conn:
conn.save_logbook(book)
# CREATE AND RUN THE FLOW: FIRST ATTEMPT ####################
flow = flow_factory()
engine = taskflow.engines.load(flow, flow_detail=flow_detail,
book=book, backend=backend)
print_task_states(flow_detail, "At the beginning, there is no state")
eu.print_wrapped("Running")
engine.run()
print_task_states(flow_detail, "After running")
# RE-CREATE, RESUME, RUN ####################################
eu.print_wrapped("Resuming and running again")
# NOTE(harlowja): reload the flow detail from backend, this will allow us
# to resume the flow from its suspended state, but first we need to search
# for the right flow details in the correct logbook where things are
# stored.
#
# We could avoid re-loading the engine and just do engine.run() again, but
# this example shows how another process may unsuspend a given flow and
# start it again for situations where this is useful to-do (say the process
# running the above flow crashes).
flow2 = flow_factory()
flow_detail_2 = find_flow_detail(backend, book.uuid, flow_detail.uuid)
engine2 = taskflow.engines.load(flow2,
flow_detail=flow_detail_2,
backend=backend, book=book)
engine2.run()
print_task_states(flow_detail_2, "At the end")
|