File: index.rst

package info (click to toggle)
python-tasklib 2.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 240 kB
  • sloc: python: 2,257; makefile: 147
file content (596 lines) | stat: -rw-r--r-- 19,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
Welcome to tasklib's documentation!
===================================

tasklib is a Python library for interacting with taskwarrior_ databases, using
a queryset API similar to that of Django's ORM.

Supports Python 3.5 and above, with taskwarrior 2.4.x and above.
Older versions of taskwarrior are untested and may not work.

Requirements
------------

* taskwarrior_ v2.4.x or above, although newest minor release is recommended.

Installation
------------

Install via pip (recommended)::

    pip install tasklib

Or clone from github::

    git clone https://github.com/robgolding/tasklib.git
    cd tasklib
    python setup.py install

Initialization
--------------

Optionally initialize the ``TaskWarrior`` instance with ``data_location`` (the
database directory). If it doesn't already exist, this will be created
automatically unless ``create=False``.

The default location is the same as taskwarrior's::

    >>> tw = TaskWarrior(data_location='~/.task', create=True)

The ``TaskWarrior`` instance will also use your .taskrc configuration (so that
it recognizes the same UDAs as your task binary, uses the same configuration,
etc.). To override the location of the .taskrc, use
``taskrc_location=~/some/different/path``.

Creating Tasks
--------------

To create a task, simply create a new ``Task`` object::

    >>> new_task = Task(tw, description="throw out the trash")

This task is not yet saved to TaskWarrior (same as in Django), not until
you call ``.save()`` method::

    >>> new_task.save()

You can set any attribute as a keyword argument to the Task object::

    >>> complex_task = Task(tw, description="finally fix the shower", due=datetime(2015,2,14,8,0,0), priority='H')

or by setting the attributes one by one::

    >>> complex_task = Task(tw)
    >>> complex_task['description'] = "finally fix the shower"
    >>> complex_task['due'] = datetime(2015,2,14,8,0,0)
    >>> complex_task['priority'] = 'H'

Modifying Task
--------------

To modify a created or retrieved ``Task`` object, use dictionary-like access::

    >>> homework = tw.tasks.get(tags=['chores'])
    >>> homework['project'] = 'Home'

The change is not propagated to the TaskWarrior until you run the ``save()`` method::

    >>> homework.save()

Attributes, which map to native Python objects are converted. See Task Attributes section.

Task Attributes
---------------

Attributes of task objects are accessible through indices, like so::

    >>> task = tw.tasks.pending().get(tags__contain='work')  # There is only one pending task with 'work' tag
    >>> task['description']
    'Upgrade Ubuntu Server'
    >>> task['id']
    15
    >>> task['due']
    datetime.datetime(2015, 2, 5, 0, 0, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> task['tags']
    ['work', 'servers']

The following fields are deserialized into Python objects:

* ``due``, ``wait``, ``scheduled``, ``until``, ``entry``: deserialized to a ``datetime`` object
* ``annotations``: deserialized to a list of ``TaskAnnotation`` objects
* ``tags``: deserialized to a list of strings
* ``depends``: deserialized to a set of ``Task`` objects

Attributes should be set using the correct Python representation, which will be
serialized into the correct format when the task is saved.

Task properties
---------------

Tasklib defines several properties upon ``Task`` object, for convenience::

    >>> t.save()
    >>> t.saved
    True
    >>> t.pending
    True
    >>> t.active
    False
    >>> t.start()
    >>> t.active
    True
    >>> t.done()
    >>> t.completed
    True
    >>> t.pending
    False
    >>> t.delete()
    >>> t.deleted
    True

Operations on Tasks
-------------------

After modifying one or more attributes, simple call ``save()`` to write those
changes to the database::

    >>> task = tw.tasks.pending().get(tags__contain='work')
    >>> task['due'] = datetime(year=2014, month=1, day=5)
    >>> task.save()

To mark a task as complete, use ``done()``::

    >>> task = tw.tasks.pending().get(tags__contain='work')
    >>> task.done()
    >>> len(tw.tasks.pending().filter(tags__contain='work'))
    0

To delete a task, use ``delete()``::

    >>> task = tw.tasks.get(description="task added by mistake")
    >>> task.delete()

To update a task object with values from TaskWarrior database, use ``refresh()``. Example::

    >>> task = Task(tw, description="learn to cook")
    >>> task.save()
    >>> task['id']
    5
    >>> task['tags']
    []

Now, suppose the we modify the task using the TaskWarrior interface in another terminal::

    $ task 5 modify +someday
    Task 5 modified.

Switching back to the open python process::

   >>> task['tags']
   []
   >>> task.refresh()
   >>> task['tags']
   ['someday']

Tasks can also be started and stopped. Use ``start()`` and ``stop()``
respectively::

    >>> task.start()
    >>> task['start']
    datetime.datetime(2015, 7, 16, 18, 48, 28, tzinfo=<DstTzInfo 'Europe/Prague' CEST+2:00:00 DST>)
    >>> task.stop()
    >>> task['start']
    >>> task.done()
    >>> task['end']
    datetime.datetime(2015, 7, 16, 18, 49, 2, tzinfo=<DstTzInfo 'Europe/Prague' CEST+2:00:00 DST>)


Retrieving Tasks
----------------

``tw.tasks`` is a ``TaskQuerySet`` object which emulates the Django QuerySet
API. To get all tasks (including completed ones)::

    >>> tw.tasks.all()
    ['First task', 'Completed task', 'Deleted task', ...]

Filtering
---------

Filter tasks using the same familiar syntax::

    >>> tw.tasks.filter(status='pending', tags__contains=['work'])
    ['Upgrade Ubuntu Server']

Filter arguments are passed to the ``task`` command (``__`` is replaced by
a period) so the above example is equivalent to the following command::

    $ task status:pending tags.contain=work

Tasks can also be filtered using raw commands, like so::

    >>> tw.tasks.filter('status:pending +work')
    ['Upgrade Ubuntu Server']

Although this practice is discouraged, as by using raw commands you may lose
some of the portability of your commands over different TaskWarrior versions.

However, you can mix raw commands with keyword filters, as in the given example::

    >>> tw.tasks.filter('+BLOCKING', project='Home')  # Gets all blocking tasks in project Home
    ['Fix the toilette']

This can be a neat way how to use syntax not yet supported by tasklib. The above
is excellent example, since virtual tags do not work the same way as the ordinary ones, that is::

    >>> tw.tasks.filter(tags=['BLOCKING'])
    >>> []

will not work.

There are built-in functions for retrieving pending & completed tasks::

    >>> tw.tasks.pending().filter(tags__contain='work')
    ['Upgrade Ubuntu Server']
    >>> len(tw.tasks.completed())
    227

Use ``get()`` to return the only task in a ``TaskQuerySet``, or raise an
exception::

    >>> tw.tasks.get(tags__contain='work')['status']
    'pending'
    >>> tw.tasks.get(status='completed', tags__contains='work')  # Status of only task with the work tag is pending, so this should fail
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "tasklib/task.py", line 224, in get
        'Lookup parameters were {0}'.format(kwargs))
    tasklib.task.DoesNotExist: Task matching query does not exist. Lookup parameters were {'status': 'completed', 'tags__contains': ['work']}
    >>> tw.tasks.get(status='pending')
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "tasklib/task.py", line 227, in get
        'Lookup parameters were {1}'.format(num, kwargs))
    ValueError: get() returned more than one Task -- it returned 23! Lookup parameters were {'status': 'pending'}

Additionally, since filters return ``TaskQuerySets`` you can stack filters on top of each other::

    >>> home_tasks = tw.tasks.filter(project='Wife')
    >>> home_tasks.filter(due__before=datetime(2015,2,14,14,14,14))  # What I have to do until Valentine's day
    ['Prepare surprise birthday party']

Equality of Task objects
------------------------

Two Tasks are considered equal if they have the same UUIDs::

    >>> task1 = Task(tw, description="Pet the dog")
    >>> task1.save()
    >>> task2 = tw.tasks.get(description="Pet the dog")
    >>> task1 == task2
    True

If you compare the two unsaved tasks, they are considered equal only if it's the
same Python object::

    >>> task1 = Task(tw, description="Pet the cat")
    >>> task2 = Task(tw, description="Pet the cat")
    >>> task1 == task2
    False
    >>> task3 = task1
    >>> task3 == task1
    True

Accessing original values
-------------------------

To access the saved state of the Task, use dict-like access using the
``original`` attribute:

    >>> t = Task(tw, description="tidy up")
    >>> t.save()
    >>> t['description'] = "tidy up the kitchen and bathroom"
    >>> t['description']
    "tidy up the kitchen and bathroom"
    >>> t.original['description']
    "tidy up"

When you save the task, original values are refreshed to reflect the
saved state of the task:

    >>> t.save()
    >>> t.original['description']
    "tidy up the kitchen and bathroom"

Dealing with dates and time
---------------------------

Any timestamp-like attributes of the tasks are converted to timezone-aware
datetime objects. To achieve this, Tasklib leverages ``zoneinfo`` Python module,
which brings the Olsen timezone database to Python.

This shields you from annoying details of Daylight Saving Time shifts
or conversion between different timezones. For example, to list all the
tasks which are due midnight if you're currently in Berlin:

    >>> myzone = zoneinfo.ZoneInfo('Europe/Berlin')
    >>> midnight = datetime(2015,2,2,0,0,0,tzinfo=myzone)
    >>> tw.tasks.filter(due__before=midnight)

However, this is still a little bit tedious. That's why TaskWarrior object
is capable of automatic timezone detection, using the ``tzlocal`` Python
module. If your system timezone is set to 'Europe/Berlin', following example
will work the same way as the previous one:

    >>> tw.tasks.filter(due__before=datetime(2015,2,2,0,0,0))

You can also use simple dates when filtering:

    >>> tw.tasks.filter(due__before=date(2015,2,2))

In such case, a 00:00:00 is used as the time component.

Of course, you can use datetime naive objects when initializing Task object
or assigning values to datetime attributes:

    >>> t = Task(tw, description="Buy new shoes", due=date(2015,2,5))
    >>> t['due']
    datetime.datetime(2015, 2, 5, 0, 0, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> t['due'] = date(2015,2,6,15,15,15)
    >>> t['due']
    datetime.datetime(2015, 2, 6, 15, 15, 15, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)

However, since timezone-aware and timezone-naive datetimes are not comparable
in Python, this can cause some unexpected behaviour:

    >>> from datetime import datetime
    >>> now = datetime.now()
    >>> t = Task(tw, description="take out the trash now")
    >>> t['due'] = now
    >>> now
    datetime.datetime(2015, 2, 1, 19, 44, 4, 770001)
    >>> t['due']
    datetime.datetime(2015, 2, 1, 19, 44, 4, 770001, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> t['due'] == now
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      TypeError: can't compare offset-naive and offset-aware datetimes

If you want to compare datetime aware value with datetime naive value, you need
to localize the naive value first:

    >>> from datetime import datetime
    >>> now = datetime.now().astimezone()
    >>> t['due'] = now
    >>> now
    datetime.datetime(2015, 2, 1, 19, 44, 4, 770001, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> t['due'] == now
    True

Also, note that it does not matter whether the timezone aware datetime objects
are set in the same timezone:

    >>> import zoneinfo
    >>> t['due']
    datetime.datetime(2015, 2, 1, 19, 44, 4, 770001, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> now.astimezone(zoneinfo.ZoneInfo('UTC'))
    datetime.datetime(2015, 2, 1, 18, 44, 4, 770001, tzinfo=<UTC>)
    >>> t['due'] == now.astimezone(zoneinfo.ZoneInfo('UTC'))
    True

*Note*: Following behaviour is available only for TaskWarrior >= 2.4.0.

There is a third approach to setting up date time values, which leverages
the 'task calc' command. You can simply set any datetime attribute to
any string that contains an acceptable TaskWarrior-formatted time expression::

    $ task calc now + 1d
    2015-07-17T21:17:54

This syntax can be leveraged in the python interpreter as follows::

    >>> t['due'] = "now + 1d"
    >>> t['due']
    datetime.datetime(2015, 7, 17, 21, 19, 31, tzinfo=<DstTzInfo 'Europe/Berlin' CEST+2:00:00 DST>)

It can be easily seen that the string with TaskWarrior-formatted time expression
is automatically converted to native datetime in the local time zone.

For the list of acceptable formats and keywords, please consult:

* http://taskwarrior.org/docs/dates.html
* http://taskwarrior.org/docs/named_dates.html

However, as each such assignment involves call to 'task calc' for conversion,
it might cause some performance issues when assigning strings to datetime
attributes repeatedly, in a automated manner.

Working with annotations
------------------------

Annotations of the tasks are represented in tasklib by ``TaskAnnotation`` objects. These
are much like ``Task`` objects, albeit very simplified.

    >>> annotated_task = tw.tasks.get(description='Annotated task')
    >>> annotated_task['annotations']
    [Yeah, I am annotated!]

Annotations have only defined ``entry`` and ``description`` values::

    >>> annotation = annotated_task['annotations'][0]
    >>> annotation['entry']
    datetime.datetime(2015, 1, 3, 21, 13, 55, tzinfo=<DstTzInfo 'Europe/Berlin' CET+1:00:00 STD>)
    >>> annotation['description']
    u'Yeah, I am annotated!'

To add a annotation to a Task, use ``add_annotation()``::

    >>> task = Task(tw, description="new task")
    >>> task.add_annotation("we can annotate any task")
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
        File "build/bdist.linux-x86_64/egg/tasklib/task.py", line 355, in add_annotation
    tasklib.task.NotSaved: Task needs to be saved to add annotation

However, Task needs to be saved before you can add a annotation to it::

    >>> task.save()
    >>> task.add_annotation("we can annotate saved tasks")
    >>> task['annotations']
    [we can annotate saved tasks]

To remove the annotation, pass its description to ``remove_annotation()`` method::

    >>> task.remove_annotation("we can annotate saved tasks")

Alternatively, you can pass the ``TaskAnnotation`` object itself::

    >>> task.remove_annotation(task['annotations'][0])


Running custom commands
-----------------------

To run a custom commands, use ``execute_command()`` method of ``TaskWarrior`` object::

    >>> tw = TaskWarrior()
    >>> tw.execute_command(['log', 'Finish high school.'])
    [u'Logged task.']

You can use ``config_override`` keyword argument to specify a dictionary of configuration overrides::

    >>> tw.execute_command(['3', 'done'], config_override={'gc': 'off'}) # Will mark 3 as completed and it will retain its ID


Additionally, you can use ``return_all=True`` flag, which returns
``(stdout, sterr, return_code)`` triplet, and ``allow_failure=False``, which will
prevent tasklib from raising an exception if the task binary returned non-zero
return code::

    >>> tw.execute_command(['invalidcommand'], allow_failure=False, return_all=True)
    ([u''],
     [u'Using alternate .taskrc file /home/tbabej/.taskrc',
      u"[task next rc:/home/tbabej/.taskrc rc.recurrence.confirmation=no rc.json.array=off rc.confirmation=no rc.bulk=0 rc.dependency.confirmation=no description ~ 'invalidcommand']",
      u'Configuration override rc.recurrence.confirmation:no',
      u'Configuration override rc.json.array:off',
      u'Configuration override rc.confirmation:no',
      u'Configuration override rc.bulk:0',
      u'Configuration override rc.dependency.confirmation:no',
      u'No matches.',
      u'There are local changes.  Sync required.'],
     1)


Setting custom configuration values
-----------------------------------

By default, TaskWarrior uses configuration values stored in your .taskrc.
To see what configuration value overrides are passed to each executed
task command, have a peek into ``overrides`` attribute of ``TaskWarrior`` object::

    >>> tw.overrides
    {'confirmation': 'no', 'data.location': '/home/tbabej/.task'}

To pass your own configuration overrides, you just need to update this dictionary::

    >>> tw.overrides.update({'hooks': 'off'})  # tasklib will not trigger hooks

Creating hook scripts
---------------------

From version 2.4.0, TaskWarrior has support for hook scripts. Tasklib provides
some very useful helpers to write those. With tasklib, writing these becomes
a breeze::

    #!/usr/bin/python

    from tasklib.task import Task
    task = Task.from_input()
    # ... <custom logic>
    print task.export_data()

For example, plugin which would assign the priority "H" to any task containing
three exclamation marks in the description, would go like this::

    #!/usr/bin/python

    from tasklib.task import Task
    task = Task.from_input()

    if "!!!" in task['description']:
        task['priority'] = "H"

    print task.export_data()

Tasklib can automatically detect whether it's running in the ``on-modify`` event,
which provides more input than ``on-add`` event and reads the data accordingly.

This means the example above works both for ``on-add`` and ``on-modify`` events!

Consenquently, you can create just one hook file for both ``on-add`` and
``on-modify`` events, and you just need to create a symlink for the other one.
This removes the need for maintaining two copies of the same code base and/or
boilerplate code.

In ``on-modify`` events, tasklib loads both the original version and the modified
version of the task to the returned ``Task`` object. To access the original data
(in read-only manner), use ``original`` dict-like attribute:

    >>> t = Task.from_input()
    >>> t['description']
    "Modified description"
    >>> t.original['description']
    "Original description"

Working with UDAs
-----------------

Since TaskWarrior does read your .taskrc, you need not to define any UDAs
in the TaskWarrior's config dictionary, as described above. Suppose we have
a estimate UDA in the .taskrc::

    uda.estimate.type = numeric

We can simply filter and create tasks using the estimate UDA out of the box::

    >>> tw = TaskWarrior()
    >>> task = Task(tw, description="Long task", estimate=1000)
    >>> task.save()
    >>> task['id']
    1

This is saved as UDA in the TaskWarrior::

    $ task 1 export
    {"id":1,"description":"Long task","estimate":1000, ...}

We can also speficy UDAs as arguments in the TaskFilter::

    >>> tw.tasks.filter(estimate=1000)
    Long task

Syncing
-------

If you have configured the required configuration variables in your .taskrc,
syncing is as easy as::

    >>> tw = TaskWarrior()
    >>> tw.execute_command(['sync'])

If you want to use non-standard server/credentials, you'll need to provide configuration
overrides to the ``TaskWarrior`` instance. Update the ``config`` dictionary with the
values you desire to override, and then we can run the sync command using
the ``execute_command()`` method::

    >>> tw = TaskWarrior()
    >>> sync_config = {
    ...     'taskd.certificate': '/home/tbabej/.task/tbabej.cert.pem',
    ...     'taskd.credentials': 'Public/tbabej/34af54de-3cb2-4d3d-82be-33ddb8fd3e66',
    ...     'taskd.server': 'task.server.com:53589',
    ...     'taskd.ca': '/home/tbabej/.task/ca.cert.pem',
    ...     'taskd.trust': 'ignore hostname'}
    >>> tw.config.update(sync_config)
    >>> tw.execute_command(['sync'])


.. _taskwarrior: http://taskwarrior.org