File: mini-tutorial.rst

package info (click to toggle)
python-tatsu 5.13.1%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 892 kB
  • sloc: python: 10,202; makefile: 54
file content (702 lines) | stat: -rw-r--r-- 14,922 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
.. include:: links.rst

.. _pegen: https://github.com/we-like-parsers/pegen
.. _PEG parser: https://peps.python.org/pep-0617/


`Calc` Mini Tutorial
--------------------

|TatSu|  users have suggested that a simple calculator, like the one in the documentation for `PLY`_ would be useful.

Here it is.

The initial grammar
~~~~~~~~~~~~~~~~~~~

This is the original `PLY`_ grammar for arithmetic expressions:

.. code::

    expression : expression + term
               | expression - term
               | term

    term       : term * factor
               | term / factor
               | factor

    factor     : NUMBER
               | ( expression )

And this is the input expression for testing:

.. code:: python

    3 + 5 * ( 10 - 20 )

The Tatsu grammar
~~~~~~~~~~~~~~~~~

The first step is to convert the grammar to |TatSu| syntax and style,
add rules for lexical elements (``number`` in this case), add a
``start`` rule that checks for end of input, and a directive to name the
generated classes:

.. code::

    @@grammar::CALC


    start
        =
        expression $
        ;


    expression
        =
        | expression '+' term
        | expression '-' term
        | term
        ;


    term
        =
        | term '*' factor
        | term '/' factor
        | factor
        ;


    factor
        =
        | '(' expression ')'
        | number
        ;


    number
        =
        /\d+/
        ;


Add *cut* expressions
~~~~~~~~~~~~~~~~~~~~~

*Cut* expressions make a parser commit to a particular option after
certain tokens have been seen. They make parsing more efficient, because
other options are not tried. They also make error messages more precise,
because errors will be reported closest to the point of failure in the
input.

.. code::

    @@grammar::CALC


    start
        =
        expression $
        ;


    expression
        =
        | expression '+' ~ term
        | expression '-' ~ term
        | term
        ;


    term
        =
        | term '*' ~ factor
        | term '/' ~ factor
        | factor
        ;


    factor
        =
        | '(' ~ expression ')'
        | number
        ;


    number
        =
        /\d+/
        ;

Let's save the above grammar in a file called ``calc_cut.ebnf``.
We can now compile the grammar, and test the parser:

.. code:: python

    import json
    from pprint import pprint

    import tatsu


    def simple_parse():
        with open('calc_cut.ebnf') as f:
            grammar = f.read()

        parser = tatsu.compile(grammar)
        ast = parser.parse('3 + 5 * ( 10 - 20 )')

        print('# SIMPLE PARSE')
        print('# AST')
        pprint(ast, width=20, indent=4)

        print()

        print('# JSON')
        print(json.dumps(ast, indent=4))


    if __name__ == '__main__':
        simple_parse()

..

Save the above in ``calc.py``. This is the output:

.. code:: bash

    $ python calc.py

.. code:: python

    # SIMPLE PARSE
    # AST
    [   '3',
        '+',
        [   '5',
            '*',
            [   '(',
                [   '10',
                    '-',
                    '20'],
                ')']]]

    # JSON
    [
        "3",
        "+",
        [
            "5",
            "*",
            [
                "(",
                [
                    "10",
                    "-",
                    "20"
                ],
                ")"
            ]
        ]
    ]


Annotating the grammar
~~~~~~~~~~~~~~~~~~~~~~

Dealing with `AST`_\ s that are lists of lists leads to code that is
difficult to read, and error-prone. |TatSu| allows naming the elements
in a rule to produce more humanly-readable `AST`_\ s and to allow for
clearer semantics code. This is an annotated version of the grammar:

.. code::

    @@grammar::CALC


    start
        =
        expression $
        ;


    expression
        =
        | left:expression op:'+' ~ right:term
        | left:expression op:'-' ~ right:term
        | term
        ;


    term
        =
        | left:term op:'*' ~ right:factor
        | left:term '/' ~ right:factor
        | factor
        ;


    factor
        =
        | '(' ~ @:expression ')'
        | number
        ;


    number
        =
        /\d+/
        ;


Save the annotated grammar in ``calc_annotated.ebnf``, change
the grammar filename in ``calc.py`` and re-execute it to get the resulting AST:

.. code:: python

    # ANNOTATED AST
    {   'left': '3',
        'op': '+',
        'right': {   'left': '5',
                    'op': '*',
                    'right': {   'left': '10',
                                'op': '-',
                                'right': '20'}}}

Semantics
~~~~~~~~~~

Semantic actions for |TatSu| parsers are not specified in the grammar, but in a separate *semantics* class.

.. code:: python

    from pprint import pprint

    import tatsu
    from tatsu.ast import AST


    class CalcBasicSemantics:
        def number(self, ast):
            return int(ast)

        def term(self, ast):
            if not isinstance(ast, AST):
                return ast
            elif ast.op == '*':
                return ast.left * ast.right
            elif ast.op == '/':
                return ast.left / ast.right
            else:
                raise Exception('Unknown operator', ast.op)

        def expression(self, ast):
            if not isinstance(ast, AST):
                return ast
            elif ast.op == '+':
                return ast.left + ast.right
            elif ast.op == '-':
                return ast.left - ast.right
            else:
                raise Exception('Unknown operator', ast.op)


    def parse_with_basic_semantics():
        with open('calc_annotated.ebnf') as f:
            grammar = f.read()

        parser = tatsu.compile(grammar)
        ast = parser.parse(
            '3 + 5 * ( 10 - 20 )',
            semantics=CalcBasicSemantics()
        )

        print('# BASIC SEMANTICS RESULT')
        pprint(ast, width=20, indent=4)


    if __name__ == '__main__':
        parse_with_basic_semantics()

Save the above in ``calc_semantics.py`` and execute it with ``python calc_semantics.py``.
The result is:

.. code:: python

    # BASIC SEMANTICS RESULT
    -47


One rule per expression type
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Having semantic actions determine what was parsed with ``isinstance()`` or querying the AST_ for operators is not very pythonic, nor object oriented, and it leads to code that's more difficult to maintain. It's preferable to have one rule per *expression kind*, something that will be necessary if we want to build object models to use *walkers* and *code generation*.


.. code::

    @@grammar::CALC


    start
        =
        expression $
        ;


    expression
        =
        | addition
        | subtraction
        | term
        ;


    addition
        =
        left:expression op:'+' ~ right:term
        ;

    subtraction
        =
        left:expression op:'-' ~ right:term
        ;


    term
        =
        | multiplication
        | division
        | factor
        ;


    multiplication
        =
        left:term op:'*' ~ right:factor
        ;


    division
        =
        left:term op:'/' ~ right:factor
        ;


    factor
        =
        | '(' ~ @:expression ')'
        | number
        ;


    number
        =
        /\d+/
        ;

Save the above in ``calc_refactored.ebnf``.

.. code:: python

    from pprint import pprint

    import tatsu


    class CalcSemantics:
        def number(self, ast):
            return int(ast)

        def addition(self, ast):
            return ast.left + ast.right

        def subtraction(self, ast):
            return ast.left - ast.right

        def multiplication(self, ast):
            return ast.left * ast.right

        def division(self, ast):
            return ast.left / ast.right


    def parse_refactored():
        with open('calc_refactored.ebnf') as f:
            grammar = f.read()

        parser = tatsu.compile(grammar)
        ast = parser.parse(
            '3 + 5 * ( 10 - 20 )',
            semantics=CalcSemantics()
        )

        print('# REFACTORED SEMANTICS RESULT')
        pprint(ast, width=20, indent=4)
        print()


    if __name__ == '__main__':
        parse_refactored()


The semantics implementation is simpler, and the results are the same:

.. code:: python

    # REFACTORED SEMANTICS RESULT
    -47


Object models
~~~~~~~~~~~~~

Binding semantics to grammar rules is powerful and versatile, but this
approach risks tying the semantics to the *parsing process*, rather than
to the parsed *objects*.

That is not a problem for simple languages, like the arithmetic expression language in this tutorial. But as the complexity of the parsed language increases, the number of grammar rules quickly becomes larger than the types of objects parsed.

|TatSu| can create typed object models directly from the parsing process which can be navigated (*walked*) and transformed (with *code generation*) in later passes.

The first step to create an object model is to annotate the rule names with the desired class names:

.. code::

    @@grammar::Calc


    start
        =
        expression $
        ;


    expression
        =
        | addition
        | subtraction
        | term
        ;


    addition::Add
        =
        left:term op:'+' ~ right:expression
        ;


    subtraction::Subtract
        =
        left:term op:'-' ~ right:expression
        ;


    term
        =
        | multiplication
        | division
        | factor
        ;


    multiplication::Multiply
        =
        left:factor op:'*' ~ right:term
        ;


    division::Divide
        =
        left:factor op:'/' ~ right:term
        ;


    factor
        =
        | subexpression
        | number
        ;


    subexpression
        =
        '(' ~ @:expression ')'
        ;


    number::int
        =
        /\d+/
        ;

Save the grammar in a file name ``calc_model.ebnf``.

The ``tatsu.objectmodel.Node`` descendants are synthetized at runtime using ``tatsu.semantics.ModelBuilderSemantics``.

This is how the model looks like when generated with the ``tatsu.to_python_model()``
function or from the command line with ``tatsu --object-model calc_model.ebnf -G calc_semantics_model.py``:

.. code:: python

    from tatsu.objectmodel import Node
    from tatsu.semantics import ModelBuilderSemantics


    class ModelBase(Node):
        pass


    class CalcModelBuilderSemantics(ModelBuilderSemantics):
        def __init__(self, context=None, types=None):
            types = [
                t for t in globals().values()
                if type(t) is type and issubclass(t, ModelBase)
            ] + (types or [])
            super(CalcModelBuilderSemantics, self).__init__(context=context, types=types)


    class Add(ModelBase):
        left = None
        op = None
        right = None


    class Subtract(ModelBase):
        left = None
        op = None
        right = None


    class Multiply(ModelBase):
        left = None
        op = None
        right = None


    class Divide(ModelBase):
        left = None
        right = None

The model that results from a parse can be printed, and walked:

.. code:: python

    import tatsu
    from tatsu.walkers import NodeWalker


    class CalcWalker(NodeWalker):
        def walk_object(self, node):
            return node

        def walk__add(self, node):
            return self.walk(node.left) + self.walk(node.right)

        def walk__subtract(self, node):
            return self.walk(node.left) - self.walk(node.right)

        def walk__multiply(self, node):
            return self.walk(node.left) * self.walk(node.right)

        def walk__divide(self, node):
            return self.walk(node.left) / self.walk(node.right)


    def parse_and_walk_model():
        with open('calc_model.ebnf') as f:
            grammar = f.read()

        parser = tatsu.compile(grammar, asmodel=True)
        model = parser.parse('3 + 5 * ( 10 - 20 )')

        print('# WALKER RESULT IS:')
        print(CalcWalker().walk(model))
        print()


    if __name__ == '__main__':
        parse_and_walk_model()

Save the above program in ``calc_model.py`` and execute it to get this result:

.. code:: python

    # WALKER RESULT IS:
    -47


Code Generation
~~~~~~~~~~~~~~~

Translation is one of the most common tasks in language processing.
Analysis often sumarizes the parsed input, and *walkers* are good for that.
In translation, the output can often be as verbose as the input, so a systematic approach that avoids bookkeeping as much as possible is convenient.

|TatSu| provides support for template-based code generation (translation) in the ``tatsu.codegen`` module.
Code generation works by defining a translation class for each class in the model specified by the grammar.


Nowadays the preferred code generation strategy is to walk down the AST_ and `print()` the desired output, with the help of the ``NodWalker`` class, and the ``IndentPrintMixin`` mixin. That's the strategy used by pegen_, the precursor to the new `PEG parser`_ in Python_.


The following code generator translates input expressions to the postfix instructions of a stack-based processor:

.. code:: python

    import sys

    from tatsu.model import Node
    from tatsu.walkers import NodeWalker
    from tatsu.mixins.indent import IndentPrintMixin
    from tatsu.codegen import ModelRenderer

    THIS_MODULE = sys.modules[__name__]


    class PostfixCodeGenerator(NodeWalker, IndentPrintMixin):

        def walk_Add(self, node: Node, *args, **kwargs):
            with self.indent():
                self.walk(node.left)  # type: ignore
                self.walk(node.right)  # type: ignore
                self.print('ADD')

        def walk_Subtract(self, node: Node, *args, **kwargs):
            with self.indent():
                self.walk(node.left)  # type: ignore
                self.walk(node.right)  # type: ignore
                self.print('SUB')

        def walk_Multiply(self, node: Node, *args, **kwargs):
            with self.indent():
                self.walk(node.left)  # type: ignore
                self.walk(node.right)  # type: ignore
                self.print('MUL')

        def walk_Divide(self, node: Node, *args, **kwargs):
            with self.indent():
                self.walk(node.left)  # type: ignore
                self.walk(node.right)  # type: ignore
                self.print('DIV')

        def walk_int(self, node: Node, *args, **kwargs):
            self.print('PUSH', node)



Save the above program in ``calc_translate.py`` and execute it to get this result:

.. code:: python

    # TRANSLATED TO POSTFIX
        PUSH 3
            PUSH 5
                PUSH 10
                PUSH 20
                SUB
            MUL
        ADD