File: index.md

package info (click to toggle)
python-testbook 0.4.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 408 kB
  • sloc: python: 1,045; makefile: 11
file content (192 lines) | stat: -rw-r--r-- 5,387 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Usage

The motivation behind creating testbook was to be able to write conventional unit tests for Jupyter Notebooks.

## How it works

Testbook achieves conventional unit tests to be written by setting up references to variables/functions/classes in the Jupyter Notebook. All interactions with these reference objects are internally "pushed down" into the kernel, which is where it gets executed.

## Set up Jupyter Notebook under test

### Decorator and context manager pattern

These patterns are interchangeable in most cases. If there are nested decorators on your unit test function, consider using the context manager pattern instead.

- Decorator pattern

  ```{code-block} python

   from testbook import testbook

   @testbook('/path/to/notebook.ipynb', execute=True)
   def test_func(tb):
       func = tb.get("func")

       assert func(1, 2) == 3
  ```

- Context manager pattern

  ```{code-block} python

   from testbook import testbook

   def test_func():
       with testbook('/path/to/notebook.ipynb', execute=True) as tb:
           func = tb.get("func")

           assert func(1, 2) == 3
  ```

### Using `execute` to control which cells are executed before test

You may also choose to execute all or some cells:

- Pass `execute=True` to execute the entire notebook before the test. In this case, it might be better to set up a [module scoped pytest fixture](#share-kernel-context-across-multiple-tests).

- Pass `execute=['cell1', 'cell2']` or `execute='cell1'` to only execute the specified cell(s) before the test.

- Pass `execute=slice('start-cell', 'end-cell')` or `execute=range(2, 10)` to execute all cells in the specified range.

## Obtain references to objects present in notebook

### Testing functions in Jupyter Notebook

Consider the following code cell in a Jupyter Notebook:

```{code-block} python
def foo(name):
    return f"You passed {name}!"

my_list = ['list', 'from', 'notebook']
```

Reference objects to functions can be called with,

- explicit JSON serializable values (like `dict`, `list`, `int`, `float`, `str`, `bool`, etc)
- other reference objects

```{code-block} python
@testbook.testbook('/path/to/notebook.ipynb', execute=True)
def test_foo(tb):
    foo = tb.get("foo")

    # passing in explicitly
    assert foo(['spam', 'eggs']) == "You passed ['spam', 'eggs']!"

    # passing in reference object as arg
    my_list = tb.get("my_list")
    assert foo(my_list) == "You passed ['list', 'from', 'notebook']!"
```

### Testing function/class returning a non-serializable value

Consider the following code cell in a Jupyter Notebook:

```{code-block} python
class Foo:
    def __init__(self):
        self.name = name

    def say_hello(self):
        return f"Hello {self.name}!"
```

When `Foo` is instantiated from the test, the return value will be a reference object which stores a reference to the non-serializable `Foo` object.

```{code-block} python
@testbook.testbook('/path/to/notebook.ipynb', execute=True)
def test_say_hello(tb):
    Foo = tb.get("Foo")
    bar = Foo("bar")

    assert bar.say_hello() == "Hello bar!"
```

## Share kernel context across multiple tests

If your use case requires you to execute many cells (or all cells) of a Jupyter Notebook, before a test can be executed, then it would make sense to share the kernel context with multiple tests.

It can be done by setting up a [module or package scoped pytest fixture][fixture].

Consider the code cells below,

```{code-block} python
def foo(a, b):
    return a + b
```

```{code-block} python
def bar(a):
    return [x*2 for x in a]
```

The unit tests can be written as follows,

```{code-block} python
import pytest
from testbook import testbook


@pytest.fixture(scope='module')
def tb():
    with testbook('/path/to/notebook.ipynb', execute=True) as tb:
        yield tb

def test_foo(tb):
    foo = tb.get("foo")
    assert foo(1, 2) == 3


def test_bar(tb):
    bar = tb.get("bar")

    tb.inject("""
        data = [1, 2, 3]
    """)
    data = tb.get("data")

    assert bar(data) == [2, 4, 6]
```

```{warning}
Note that since the kernel is being shared in case of module scoped fixtures, you might run into weird state issues. Please keep in mind that changes made to an object in one test will reflect in other tests too. This will likely be fixed in future versions of testbook.
```

## Support for patching objects

Use the `patch` and `patch_dict` contextmanager to patch out objects during unit test. Learn more about how to use `patch` [here](https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch).

**Example usage of `patch`:**

```{code-block} python
def foo():
    bar()
```

```{code-block} python
@testbook('/path/to/notebook.ipynb', execute=True)
def test_method(tb):
    with tb.patch('__main__.bar') as mock_bar:
        foo = tb.get("foo")
        foo()

        mock_bar.assert_called_once()
```

**Example usage of `patch_dict`:**

```{code-block} python
my_dict = {'hello': 'world'}
```

```{code-block} python
@testbook('/path/to/notebook.ipynb', execute=True)
def test_my_dict(tb):
    with tb.patch('__main__.my_dict', {'hello' : 'new world'}) as mock_my_dict:
        my_dict = tb.get("my_dict")
        assert my_dict == {'hello' : 'new world'}

```

[fixture]: https://docs.pytest.org/en/stable/fixture.html#scope-sharing-a-fixture-instance-across-tests-in-a-class-module-or-session