1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
from __future__ import print_function, unicode_literals, division
from timeit import default_timer as timer
from cytoolz import curry, concat
from thinc.extra import datasets
from thinc.neural.id2vec import Embed
from thinc.neural.vec2vec import Model, ReLu, Maxout, Affine
from thinc.neural.vec2vec import Softmax, Residual
from thinc.neural._classes.batchnorm import BatchNorm
from thinc.neural.ids2vecs import MaxoutWindowEncode
from thinc.neural._classes.convolution import ExtractWindow
from thinc.loss import categorical_crossentropy
from thinc.neural.optimizers import SGD
from thinc.neural.util import to_categorical
from thinc.neural._classes.spacy_vectors import SpacyVectors
from thinc.api import chain, concatenate, clone
import numpy
from thinc.api import layerize
from thinc.neural.optimizers import linear_decay
import spacy
from spacy.attrs import SHAPE
from spacy.tokens import Doc
from spacy.strings import StringStore
import spacy.orth
import pathlib
import numpy.random
import numpy.linalg
import plac
try:
import cPickle as pickle
except ImportError:
import pickle
try:
import cytoolz as toolz
except ImportError:
import toolz
@layerize
def Orth(docs, drop=0.):
'''Get word forms.'''
ids = numpy.zeros((sum(len(doc) for doc in docs),), dtype='i')
i = 0
for doc in docs:
for token in doc:
ids[i] = token.orth
i += 1
return ids, None
#class SpacyVectors(Embed):
# on_data_hooks = []
# def __init__(self, nlp):
# Model.__init__(self)
# self._id_map = {0: 0}
# self.nO = nlp.vocab.vectors_length
# self.nM = self.nO
# self.nV = len(nlp.vocab)
# self.W.fill(0)
# vectors = self.vectors
# for i, word in enumerate(nlp.vocab):
# self._id_map[word.orth] = i+1
# vectors[i+1] = word.vector / (word.vector_norm or 1.)
#
# def predict(self, ids):
# return self._embed(ids)
#
# def begin_update(self, ids, drop=0.):
# return self.predict(ids), None
#
@layerize
def Shape(docs, drop=0.):
'''Get word shapes.'''
ids = numpy.zeros((sum(len(doc) for doc in docs),), dtype='i')
i = 0
for doc in docs:
for token in doc:
ids[i] = token.shape
i += 1
return ids, None
@layerize
def Prefix(docs, drop=0.):
'''Get prefixes.'''
ids = numpy.zeros((sum(len(doc) for doc in docs),), dtype='i')
i = 0
for doc in docs:
for token in doc:
ids[i] = token.prefix
i += 1
return ids, None
@layerize
def Suffix(docs, drop=0.):
'''Get suffixes.'''
ids = numpy.zeros((sum(len(doc) for doc in docs),), dtype='i')
i = 0
for doc in docs:
for token in doc:
ids[i] = token.suffix
i += 1
return ids, None
def spacy_preprocess(nlp, train_sents, dev_sents):
tagmap = {}
for words, tags in train_sents:
for tag in tags:
tagmap.setdefault(tag, len(tagmap))
def _encode(sents):
X = []
y = []
oovs = 0
n = 0
for words, tags in sents:
for word in words:
_ = nlp.vocab[word]
X.append(Doc(nlp.vocab, words=words))
y.append([tagmap[tag] for tag in tags])
oovs += sum(not w.has_vector for w in X[-1])
n += len(X[-1])
print(oovs, n, oovs / n)
return zip(X, y)
return _encode(train_sents), _encode(dev_sents), len(tagmap)
@layerize
def get_positions(ids, drop=0.):
positions = {id_: [] for id_ in set(ids)}
for i, id_ in enumerate(ids):
positions[id_].append(i)
return positions, None
@plac.annotations(
nr_sent=("Limit number of training examples", "option", "n", int),
nr_epoch=("Limit number of training epochs", "option", "i", int),
dropout=("Dropout", "option", "D", float),
)
def main(nr_epoch=20, nr_sent=0, width=128, depth=3, max_batch_size=32, dropout=0.3):
print("Loading spaCy and preprocessing")
nlp = spacy.load('en', parser=False, tagger=False, entity=False)
train_sents, dev_sents, _ = datasets.ewtb_pos_tags()
train_sents, dev_sents, nr_class = spacy_preprocess(nlp, train_sents, dev_sents)
if nr_sent >= 1:
train_sents = train_sents[:nr_sent]
print("Building the model")
with Model.define_operators({'>>': chain, '|': concatenate, '**': clone}):
model = (
Orth
>> SpacyVectors(nlp, width)
>> (ExtractWindow(nW=1) >> BatchNorm(Maxout(width))) ** depth
>> Softmax(nr_class)
)
print("Preparing training")
dev_X, dev_y = zip(*dev_sents)
dev_y = model.ops.flatten(dev_y)
dev_y = to_categorical(dev_y, nb_classes=50)
train_X, train_y = zip(*train_sents)
with model.begin_training(train_X, train_y) as (trainer, optimizer):
trainer.nb_epoch = nr_epoch
trainer.dropout = dropout
trainer.dropout_decay = 1e-4
trainer.batch_size = 1
epoch_times = [timer()]
epoch_loss = [0.]
n_train = sum(len(y) for y in train_y)
def track_progress():
start = timer()
acc = model.evaluate(dev_X, dev_y)
end = timer()
with model.use_params(optimizer.averages):
avg_acc = model.evaluate(dev_X, dev_y)
stats = (
epoch_loss[-1],
acc, avg_acc,
n_train, (end-epoch_times[-1]),
n_train / (end-epoch_times[-1]),
len(dev_y), (end-start),
float(dev_y.shape[0]) / (end-start),
trainer.dropout)
print(
len(epoch_loss),
"%.3f train, %.3f (%.3f) dev, %d/%d=%d wps train, %d/%.3f=%d wps run. d.o.=%.3f" % stats)
epoch_times.append(end)
epoch_loss.append(0.)
trainer.each_epoch.append(track_progress)
print("Training")
batch_size = 1.
for examples, truth in trainer.iterate(train_X, train_y):
truth = to_categorical(model.ops.flatten(truth), nb_classes=50)
guess, finish_update = model.begin_update(examples,
drop=trainer.dropout)
n_correct = (guess.argmax(axis=1) == truth.argmax(axis=1)).sum()
finish_update(guess-truth, optimizer)
epoch_loss[-1] += n_correct / n_train
trainer.batch_size = min(int(batch_size), max_batch_size)
batch_size *= 1.001
with model.use_params(optimizer.averages):
print("End: %.3f" % model.evaluate(dev_X, dev_y))
if __name__ == '__main__':
if 1:
plac.call(main)
else:
import cProfile
import pstats
cProfile.runctx("plac.call(main)", globals(), locals(), "Profile.prof")
s = pstats.Stats("Profile.prof")
s.strip_dirs().sort_stats("time").print_stats(20)
|