1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#include <stdio.h>
// Replace this with the saxpy from cuBlas or whatever?
// I doubt it matters, but it's definitely weird to have this
void __device__
saxpy(float* X, const float* Y, float scale, int n)
{
for (int i=0; i < n; ++i)
X[i] += Y[i] * scale;
}
void __global__
maxout(float* best__bo, int* which__bo,
const float* cands__bop, int B, int O, int P)
{
int b = blockIdx.x * blockDim.x + threadIdx.x;
if (b >= B) return;
for (int o=0; o < O; ++o)
{
which__bo[0] = 0;
best__bo[0] = cands__bop[0];
cands__bop += 1;
for (int p=1; p < P; ++p)
{
if (cands__bop[0] > best__bo[0])
{
which__bo[0] = p;
best__bo[0] = cands__bop[0];
}
cands__bop += 1;
}
best__bo += 1;
which__bo += 1;
}
}
void __global__
mean_pool(float* means__bo,
const float* X__to, const int* lengths__b, int B, int T, int O)
{
// Compute means of a batch of concatenated sequences, using the lengths.'''
int b = blockIdx.x; // Batch-item we're averaging
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
means__bo += O;
X__to += lengths__b[i] * O;
}
int length = lengths__b[b];
// Each invocation of the kernel averages one batch.
float scale = 1. / length;
for (int _=0; _ < length; ++_) // Iterate over rows
{
saxpy(means__bo, X__to, scale, O);
X__to += O;
}
}
void __global__
sum_pool(float* sums__bo,
const float* X__to, const int* lengths__b, int B, int T, int O)
{
// Compute sums of a batch of concatenated sequences, using the lengths.'''
int b = blockIdx.x; // Batch-item we're summing
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
sums__bo += O;
X__to += lengths__b[i] * O;
}
int length = lengths__b[b];
// Each invocation of the kernel sums one batch.
for (int _=0; _ < length; ++_) // Iterate over rows
{
saxpy(sums__bo, X__to, 1.0, O);
X__to += O;
}
}
void __global__
max_pool(float* maxes__bo, int* which__bo,
const float* X__to, const int* lengths__b, int B, int T, int O)
{
// Compute means of a batch of concatenated sequences, using the lengths.'''
int b = blockIdx.x; // Batch-item we're averaging
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
maxes__bo += O;
which__bo += O;
X__to += lengths__b[i] * O;
}
// Each invocation of the kernel maxes one batch.
// Start by assuming maxes are at i=0
for (int j=0; j < O; ++j) {
maxes__bo[j] = X__to[j];
which__bo[j] = 0;
}
X__to += O;
int length = lengths__b[b];
for (int i=1; i < length; ++i) // Iterate over rows
{
for (int j=0; j < O; ++j)
{
if (X__to[j] > maxes__bo[j])
{
maxes__bo[j] = X__to[j];
which__bo[j] = i;
}
}
X__to += O;
}
}
void __global__
backprop_mean_pool(float* dX__to, const float* d_means__bo, const int* lengths__b,
int B, int T, int O)
{
int b = blockIdx.x; // Batch-item we're averaging
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
d_means__bo += O;
dX__to += lengths__b[i] * O;
}
int length = lengths__b[b];
float scale = 1./ length;
for (int _=0; _ < length; _++)
{
saxpy(dX__to, d_means__bo, scale, O);
dX__to += O;
}
}
void __global__
backprop_sum_pool(float* dX__to, const float* d_sum__bo, const int* lengths__b,
int B, int T, int O)
{
int b = blockIdx.x; // Batch-item we're averaging
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
d_sum__bo += O;
dX__to += lengths__b[i] * O;
}
int length = lengths__b[b];
for (int _=0; _ < length; _++)
{
saxpy(dX__to, d_sum__bo, 1.0, O);
dX__to += O;
}
}
void __global__
backprop_max_pool(float* dX__to,
const float* d_maxes__bo, const int* which__bo, const int* lengths__b, int B, int T, int O)
{
int b = blockIdx.x; // Batch-item we're averaging
if (b >= B) return;
// Go to the regions we're working on
for (int i=0; i < b; ++i) {
d_maxes__bo += O;
which__bo += O;
dX__to += lengths__b[i] * O;
}
int length = lengths__b[b];
for (int i=0; i < length; ++i)
{
for (int j=0; j < O; ++j)
{
if (which__bo[j] == i)
dX__to[j] += d_maxes__bo[j];
}
dX__to += O;
}
}
|