1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
import numpy
import numpy.random
import copy
import itertools
import dill
import tqdm
def minibatch(train_X, train_y, size=16, nr_update=1000):
with tqdm.tqdm(total=nr_update * size, leave=False) as pbar:
while nr_update >= 0:
indices = numpy.arange(len(train_X))
numpy.random.shuffle(indices)
j = 0
while j < indices.shape[0]:
slice_ = indices[j : j + size]
X = _take_slice(train_X, slice_)
y = _take_slice(train_y, slice_)
yield X, y
j += size
nr_update -= 1
if nr_update <= 0:
break
pbar.update(size)
def _take_slice(data, slice_):
if isinstance(data, list) or isinstance(data, tuple):
return [data[int(i)] for i in slice_]
else:
return data[slice_]
class BestFirstFinder(object):
def __init__(self, **param_values):
self.queue = []
self.limit = 16
self.params = param_values
self.best_acc = 0.0
self.best_i = 0
self.i = 0
self.j = 0
self.best_model = None
self.temperature = 0.0
@property
def configs(self):
keys, value_groups = zip(*self.params.items())
for values in itertools.product(*value_groups):
config = dict(zip(keys, values))
yield config
def enqueue(self, model, train_acc, check_acc):
fom = check_acc * min(check_acc / train_acc, 1.0)
self.queue.append([fom, self.i, 0, model])
if check_acc >= self.best_acc:
self.best_acc = check_acc
self.best_i = self.i
self.best_model = model
self.temperature = 0.0
else:
self.temperature += 0.01
self.j = 0
self.queue.sort(reverse=True)
self.queue = self.queue[:self.limit]
def __iter__(self):
self.queue.sort(reverse=True)
self.queue = self.queue[:self.limit]
for i in range(len(self.queue)):
self.queue[i][0] = self.queue[i][0] - 0.01
self.queue[i][-1][2]['parent'] = self.queue[i][2]
self.queue[i][2] += 1
yield self.queue[i][-1]
@property
def best(self):
return self.best_model
def resample_hyper_params(hparams, temperature):
hparams = dict(hparams)
hparams['epochs'] = hparams.get('epochs', 0) + 1
hparams['learn_rate'] = resample(hparams['learn_rate'], 1e-6, 0.1, temperature)
#hparams['beta1'] = resample(hparams.get('beta1', 0.9), 0.8, 1.0, temperature)
#hparams['beta2'] = resample(hparams.get('beta2', 0.9), 0.8, 1.0, temperature)
#hparams['L2'] = resample(hparams['L2'], 0.0, 1e-3, temperature)
#hparams['batch_size'] = int(resample(hparams['batch_size'], 10, 256, temperature))
#hparams['dropout'] = resample(hparams['dropout'], 0.05, 0.7, temperature)
return hparams
def resample(curr, min_, max_, temperature):
if temperature == 0.0:
return curr
scale = (max_ - min_) * temperature
next_ = numpy.random.normal(loc=curr, scale=scale)
return min(max_, max(min_, next_))
def train_epoch(model, sgd, hparams, train_X, train_y, dev_X, dev_y, device_id=-1,
temperature=0.0):
model, sgd, hparams = dill.loads(dill.dumps((model, sgd, hparams)))
if device_id >= 0:
device = model.to_gpu(device_id)
sgd.ops = model.ops
sgd.to_gpu()
if isinstance(train_y, numpy.ndarray):
train_y = model.ops.asarray(train_y)
dev_y = model.ops.asarray(dev_y)
hparams = resample_hyper_params(hparams, temperature)
sgd.learn_rate = hparams['learn_rate']
sgd.beta1 = hparams['beta1']
sgd.beta2 = hparams['beta2']
sgd.L2 = hparams['L2']
train_acc = 0.
train_n = 0
for X, y in minibatch(train_X, train_y, size=hparams['batch_size'], nr_update=hparams['nr_update']):
yh, finish_update = model.begin_update(X, drop=hparams['dropout'])
if hasattr(y, 'shape'):
dy = (yh-y) / y.shape[0]
train_acc += (y.argmax(axis=1) == yh.argmax(axis=1)).sum()
train_n += y.shape[0]
else:
n_y = sum(len(y_i) for y_i in y)
dy = [(yh[i]-y[i])/n_y for i in range(len(yh))]
for i in range(len(y)):
train_acc += (y[i].argmax(axis=1) == yh[i].argmax(axis=1)).sum()
train_n += n_y
finish_update(dy, sgd=sgd)
train_acc /= train_n
with model.use_params(sgd.averages):
dev_acc = model.evaluate(dev_X, dev_y)
model.to_cpu()
sgd.to_cpu()
return device_id, ((model, sgd, hparams), float(train_acc), float(dev_acc))
class DevicePool(object):
"""Synchronize GPU usage"""
def __init__(self, n):
self.devices = {i: None for i in range(n)}
def acquire(self):
for i, device in self.devices.items():
if device is None:
self.devices[i] = True
return i
else:
return None
def release(self, i):
if i in self.devices:
self.devices[i] = None
#
#def best_first_sgd(initials, train_X, train_y, dev_X, dev_y,
# get_new_model=None, get_score=None):
# if get_new_model is None:
# get_new_model = _get_new_model
# if get_score is None:
# get_score = _get_score
#
# queue = []
# for i, model in enumerate(initials):
# train_acc, model = get_new_model(model, train_X, train_y)
# check_acc = get_score(model, dev_X, dev_y)
# ratio = min(check_acc / train_acc, 1.0)
# print((model[-1], train_acc, check_acc))
# queue.append([check_acc * ratio, i, model])
#
# train_acc = 0
# limit = 8
# i = 0
# best_model = None
# best_acc = 0.0
# best_i = 0
# while best_i > (i - 100) and train_acc < 0.999:
# queue.sort(reverse=True)
# queue = queue[:limit]
# prev_score, parent, model = queue[0]
# queue[0][0] -= 0.001
# yield prev_score, parent, model
# train_acc, new_model = get_new_model(model, train_X, train_y)
# check_acc = get_score(new_model, dev_X, dev_y)
# ratio = min(check_acc / train_acc, 1.0)
#
# i += 1
# queue.append([check_acc * ratio, i, new_model])
#
# if check_acc >= best_acc:
# best_acc = check_acc
# best_i = i
# best_model = new_model
# progress = {
# 'i': i,
# 'parent': parent,
# 'prev_score': prev_score,
# 'this_score': queue[-1][0],
# 'train_acc': train_acc,
# 'check_acc': check_acc,
# 'best_acc': best_acc,
# 'hparams': new_model[-1]
# }
# yield best_model, progress
#
#
#
|