File: cupy_ops.py

package info (click to toggle)
python-thinc 8.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,804 kB
  • sloc: python: 15,818; javascript: 1,554; ansic: 342; makefile: 20; sh: 13
file content (333 lines) | stat: -rw-r--r-- 11,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import numpy
from .. import registry
from .ops import Ops
from .numpy_ops import NumpyOps
from . import _custom_kernels
from ..types import DeviceTypes
from ..util import torch2xp, tensorflow2xp, mxnet2xp
from ..util import is_cupy_array
from ..util import is_torch_cuda_array, is_tensorflow_gpu_array, is_mxnet_gpu_array
from ..compat import cupy, cupyx


@registry.ops("CupyOps")
class CupyOps(Ops):
    name = "cupy"
    xp = cupy
    _xp2 = cupyx

    def __init__(
        self, device_type: DeviceTypes = "gpu", device_id: int = 0, **kwargs
    ) -> None:
        self.device_type = device_type
        self.device_id = device_id

    def to_numpy(self, data, *, byte_order=None):
        if not isinstance(data, numpy.ndarray):
            data = data.get()
        if byte_order:
            dtype = data.dtype.newbyteorder(byte_order)
            data = numpy.asarray(data, dtype=dtype)
        return data

    def gather_add(self, table, indices):
        if table.dtype in ("float32", "float64"):
            return _custom_kernels.gather_add(table, indices)
        else:
            return super().gather_add(table, indices)

    def dish(self, X, inplace=False):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.dish(X, inplace=inplace)
        else:
            return super().dish(X, inplace=inplace)

    def backprop_dish(self, dY, X, inplace=False):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_dish(dY, X, inplace=inplace)
        else:
            return super().backprop_dish(dY, X, inplace=inplace)

    def gelu(self, X, inplace=False):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.gelu(X, inplace=inplace, threshold=6.0)
        else:
            return super().gelu(X, inplace=inplace)

    def backprop_gelu(self, dY, X, inplace=False):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_gelu(dY, X, inplace=inplace, threshold=6.0)
        else:
            return super().backprop_gelu(dY, X, inplace=inplace)

    def gemm(self, x, y, out=None, trans1=False, trans2=False):
        if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
            raise ValueError(
                "Encountered a numpy array when processing with cupy. "
                "Did you call model.ops.asarray on your data?"
            )
        if trans1:
            x = x.T
        if trans2:
            y = y.T
        if out is None:
            return self.xp.dot(x, y)
        else:
            self.xp.dot(x, y, out=out)
            return out

    def asarray(self, data, dtype=None):
        # We'll try to perform a zero-copy conversion if possible.
        if is_cupy_array(data):
            array = self.xp.asarray(data, dtype=dtype)
        elif is_torch_cuda_array(data):
            array = torch2xp(data)
        elif is_tensorflow_gpu_array(data):
            array = tensorflow2xp(data)
        elif is_mxnet_gpu_array(data):
            array = mxnet2xp(data)
        else:
            array = self.xp.array(data)

        if dtype is not None:
            array = array.astype(dtype=dtype, copy=False)

        return array

    def maxout(self, X):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.maxout(X)
        else:
            return super().maxout(X)

    def backprop_maxout(self, dY, which, P):
        if dY.dtype in ("float32", "float64") and which.dtype == "int32":
            return _custom_kernels.backprop_maxout(dY, which, P)
        else:
            return super().backprop_maxout(dY, which, P)

    def relu(self, X, inplace=False):
        if not inplace:
            return X * (X > 0)
        else:
            X *= X > 0
            return X

    def backprop_relu(self, dY, Y, inplace=False):
        if not inplace:
            return dY * (Y > 0)
        dY *= Y > 0
        return dY

    def clipped_linear(
        self,
        X,
        slope: float = 1.0,
        offset: float = 0.0,
        min_val: float = 0.0,
        max_val: float = 1.0,
        inplace: bool = False,
    ):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.clipped_linear(
                X,
                inplace=inplace,
                slope=slope,
                offset=offset,
                min_val=min_val,
                max_val=max_val,
            )
        else:
            return super().clipped_linear(
                X,
                inplace=inplace,
                slope=slope,
                offset=offset,
                min_val=min_val,
                max_val=max_val,
            )

    def backprop_clipped_linear(
        self,
        dY,
        X,
        slope: float = 1.0,
        offset: float = 0.0,
        min_val: float = 0.0,
        max_val: float = 1.0,
        inplace: bool = False,
    ):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_clipped_linear(
                dY,
                X,
                slope=slope,
                offset=offset,
                min_val=min_val,
                max_val=max_val,
                inplace=inplace,
            )
        else:
            return super().backprop_clipped_linear(
                dY=dY,
                X=X,
                slope=slope,
                offset=offset,
                min_val=min_val,
                max_val=max_val,
                inplace=inplace,
            )

    def backprop_hard_swish(self, dY, X, inplace: bool = False):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_hard_swish(dY, X, inplace=inplace)
        else:
            return super().backprop_hard_swish(dY, X, inplace=inplace)

    def backprop_hard_swish_mobilenet(self, dY, X, inplace: bool = False):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_hard_swish_mobilenet(dY, X, inplace=inplace)
        else:
            return super().backprop_hard_swish_mobilenet(dY, X, inplace=inplace)

    def mish(self, X, threshold=20.0, inplace=False):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.mish(X, inplace=inplace, threshold=threshold)
        else:
            return super().mish(X, threshold, inplace)

    def backprop_mish(self, dY, X, threshold=20.0, inplace=False):
        if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_mish(
                dY, X, inplace=inplace, threshold=threshold
            )
        else:
            return super().backprop_mish(dY, X, threshold, inplace)

    def swish(self, X, inplace=False):
        if X.dtype in ("float32", "float64"):
            return _custom_kernels.swish(X, inplace=inplace, threshold=17.0)
        else:
            return super().swish(X, inplace=inplace)

    def backprop_swish(self, dY, X, Y, inplace=False):
        if X.dtype == dY.dtype == Y.dtype and X.dtype in ("float32", "float64"):
            return _custom_kernels.backprop_swish(
                dY, X, Y, inplace=inplace, threshold=17.0
            )
        else:
            return super().backprop_swish(dY, X, Y, inplace=inplace)

    def clip_gradient(self, gradient, threshold):
        # We do not use CuPy's linalg.norm, since it uses scalar reductions
        # using one CUDA block. This is a lot slower than the cuBLAS
        # implementation.
        def frobenius_norm(X):
            X_vec = X.reshape(-1)
            return cupy.cublas.nrm2(X_vec)

        grad_norm = cupy.maximum(frobenius_norm(gradient), 1e-12)
        gradient *= cupy.minimum(threshold, grad_norm) / grad_norm
        return gradient

    def seq2col(self, seq, nW, *, lengths=None):
        """Given an (M, N) sequence of vectors, return an (M, N*(nW*2+1)) sequence.
        The new sequence is constructed by concatenating nW preceding and succeeding
        vectors onto each column in the sequence, to extract a window of features.
        """
        if seq.dtype in ("float32", "float64") and (
            lengths is None or lengths.dtype == "int32"
        ):
            return _custom_kernels.seq2col(seq, nW, lengths=lengths)
        else:
            return super().seq2col(seq, nW, lengths=lengths)

    def backprop_seq2col(self, dY, nW, *, lengths=None):
        if dY.dtype in ("float32", "float64") and (
            lengths is None or lengths.dtype == "int32"
        ):
            return _custom_kernels.backprop_seq2col(dY, nW, lengths=lengths)
        else:
            return super().backprop_seq2col(dY, nW, lengths=lengths)

    def reduce_mean(self, X, lengths):
        if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
            return _custom_kernels.reduce_mean(X, lengths=lengths)
        else:
            super().reduce_mean(X, lengths)

    def backprop_reduce_mean(self, d_means, lengths):
        if d_means.dtype in ("float32", "float64") and lengths.dtype == "int32":
            return _custom_kernels.backprop_reduce_mean(d_means, lengths)
        else:
            super().backprop_reduce_mean(d_means, lengths)

    def reduce_max(self, X, lengths):
        if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
            return _custom_kernels.reduce_max(X, lengths)
        else:
            super().reduce_max(X, lengths)

    def backprop_reduce_max(self, d_maxes, which, lengths):
        if (
            d_maxes.dtype in ("float32", "float64")
            and which.dtype == "int32"
            and lengths.dtype == "int32"
        ):
            return _custom_kernels.backprop_reduce_max(d_maxes, which, lengths)
        else:
            super().backprop_reduce_max(d_maxes, which, lengths)

    def reduce_sum(self, X, lengths):
        if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
            return _custom_kernels.reduce_sum(X, lengths)
        else:
            return super().reduce_sum(X, lengths)

    def backprop_reduce_sum(self, d_sums, lengths):
        if d_sums.dtype in ("float32", "float64") and lengths.dtype == "int32":
            return _custom_kernels.backprop_reduce_sum(d_sums, lengths)
        else:
            return super().backprop_reduce_sum(d_sums, lengths)

    def hash(self, ids, seed):
        return _custom_kernels.hash(ids, seed)

    def scatter_add(self, table, indices, values):
        self._xp2.scatter_add(table, indices, values)

    def adam(
        self, weights, gradient, mom1, mom2, beta1, beta2, eps, learn_rate, mod_rate=1.0
    ):
        _check_compatible_shape(weights, gradient)
        _check_compatible_shape(weights, mom1)
        _check_compatible_shape(weights, mom2)

        adam_kernel(
            gradient, learn_rate, 1 - beta1, 1 - beta2, eps, weights, mom1, mom2
        )
        gradient.fill(0)
        return weights, gradient, mom1, mom2

    def position_encode(self, N, D, period=10000, out=None):
        positions = NumpyOps().position_encode(N, D, period=period, out=out)
        return self.asarray(positions)


if cupy is not None:
    adam_kernel = cupy.ElementwiseKernel(
        "T grad, T lr, T one_minus_beta1, T one_minus_beta2, T eps",
        "T param, T m, T v",
        """m += one_minus_beta1 * (grad - m);
        v += one_minus_beta2 * (grad * grad - v);
        param -= lr * m / (sqrt(v) + eps);""",
        "adam",
    )
else:
    adam_kernel = None


def _check_compatible_shape(u, v):
    if u.shape != v.shape:
        msg = f"arrays have incompatible shapes: {u.shape} and {v.shape}"
        raise ValueError(msg)