1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
import numpy
from .. import registry
from .ops import Ops
from .numpy_ops import NumpyOps
from . import _custom_kernels
from ..types import DeviceTypes
from ..util import torch2xp, tensorflow2xp, mxnet2xp
from ..util import is_cupy_array
from ..util import is_torch_cuda_array, is_tensorflow_gpu_array, is_mxnet_gpu_array
from ..compat import cupy, cupyx
@registry.ops("CupyOps")
class CupyOps(Ops):
name = "cupy"
xp = cupy
_xp2 = cupyx
def __init__(
self, device_type: DeviceTypes = "gpu", device_id: int = 0, **kwargs
) -> None:
self.device_type = device_type
self.device_id = device_id
def to_numpy(self, data, *, byte_order=None):
if not isinstance(data, numpy.ndarray):
data = data.get()
if byte_order:
dtype = data.dtype.newbyteorder(byte_order)
data = numpy.asarray(data, dtype=dtype)
return data
def gather_add(self, table, indices):
if table.dtype in ("float32", "float64"):
return _custom_kernels.gather_add(table, indices)
else:
return super().gather_add(table, indices)
def dish(self, X, inplace=False):
if X.dtype in ("float32", "float64"):
return _custom_kernels.dish(X, inplace=inplace)
else:
return super().dish(X, inplace=inplace)
def backprop_dish(self, dY, X, inplace=False):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_dish(dY, X, inplace=inplace)
else:
return super().backprop_dish(dY, X, inplace=inplace)
def gelu(self, X, inplace=False):
if X.dtype in ("float32", "float64"):
return _custom_kernels.gelu(X, inplace=inplace, threshold=6.0)
else:
return super().gelu(X, inplace=inplace)
def backprop_gelu(self, dY, X, inplace=False):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_gelu(dY, X, inplace=inplace, threshold=6.0)
else:
return super().backprop_gelu(dY, X, inplace=inplace)
def gemm(self, x, y, out=None, trans1=False, trans2=False):
if isinstance(x, numpy.ndarray) or isinstance(y, numpy.ndarray):
raise ValueError(
"Encountered a numpy array when processing with cupy. "
"Did you call model.ops.asarray on your data?"
)
if trans1:
x = x.T
if trans2:
y = y.T
if out is None:
return self.xp.dot(x, y)
else:
self.xp.dot(x, y, out=out)
return out
def asarray(self, data, dtype=None):
# We'll try to perform a zero-copy conversion if possible.
if is_cupy_array(data):
array = self.xp.asarray(data, dtype=dtype)
elif is_torch_cuda_array(data):
array = torch2xp(data)
elif is_tensorflow_gpu_array(data):
array = tensorflow2xp(data)
elif is_mxnet_gpu_array(data):
array = mxnet2xp(data)
else:
array = self.xp.array(data)
if dtype is not None:
array = array.astype(dtype=dtype, copy=False)
return array
def maxout(self, X):
if X.dtype in ("float32", "float64"):
return _custom_kernels.maxout(X)
else:
return super().maxout(X)
def backprop_maxout(self, dY, which, P):
if dY.dtype in ("float32", "float64") and which.dtype == "int32":
return _custom_kernels.backprop_maxout(dY, which, P)
else:
return super().backprop_maxout(dY, which, P)
def relu(self, X, inplace=False):
if not inplace:
return X * (X > 0)
else:
X *= X > 0
return X
def backprop_relu(self, dY, Y, inplace=False):
if not inplace:
return dY * (Y > 0)
dY *= Y > 0
return dY
def clipped_linear(
self,
X,
slope: float = 1.0,
offset: float = 0.0,
min_val: float = 0.0,
max_val: float = 1.0,
inplace: bool = False,
):
if X.dtype in ("float32", "float64"):
return _custom_kernels.clipped_linear(
X,
inplace=inplace,
slope=slope,
offset=offset,
min_val=min_val,
max_val=max_val,
)
else:
return super().clipped_linear(
X,
inplace=inplace,
slope=slope,
offset=offset,
min_val=min_val,
max_val=max_val,
)
def backprop_clipped_linear(
self,
dY,
X,
slope: float = 1.0,
offset: float = 0.0,
min_val: float = 0.0,
max_val: float = 1.0,
inplace: bool = False,
):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_clipped_linear(
dY,
X,
slope=slope,
offset=offset,
min_val=min_val,
max_val=max_val,
inplace=inplace,
)
else:
return super().backprop_clipped_linear(
dY=dY,
X=X,
slope=slope,
offset=offset,
min_val=min_val,
max_val=max_val,
inplace=inplace,
)
def backprop_hard_swish(self, dY, X, inplace: bool = False):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_hard_swish(dY, X, inplace=inplace)
else:
return super().backprop_hard_swish(dY, X, inplace=inplace)
def backprop_hard_swish_mobilenet(self, dY, X, inplace: bool = False):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_hard_swish_mobilenet(dY, X, inplace=inplace)
else:
return super().backprop_hard_swish_mobilenet(dY, X, inplace=inplace)
def mish(self, X, threshold=20.0, inplace=False):
if X.dtype in ("float32", "float64"):
return _custom_kernels.mish(X, inplace=inplace, threshold=threshold)
else:
return super().mish(X, threshold, inplace)
def backprop_mish(self, dY, X, threshold=20.0, inplace=False):
if X.dtype == dY.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_mish(
dY, X, inplace=inplace, threshold=threshold
)
else:
return super().backprop_mish(dY, X, threshold, inplace)
def swish(self, X, inplace=False):
if X.dtype in ("float32", "float64"):
return _custom_kernels.swish(X, inplace=inplace, threshold=17.0)
else:
return super().swish(X, inplace=inplace)
def backprop_swish(self, dY, X, Y, inplace=False):
if X.dtype == dY.dtype == Y.dtype and X.dtype in ("float32", "float64"):
return _custom_kernels.backprop_swish(
dY, X, Y, inplace=inplace, threshold=17.0
)
else:
return super().backprop_swish(dY, X, Y, inplace=inplace)
def clip_gradient(self, gradient, threshold):
# We do not use CuPy's linalg.norm, since it uses scalar reductions
# using one CUDA block. This is a lot slower than the cuBLAS
# implementation.
def frobenius_norm(X):
X_vec = X.reshape(-1)
return cupy.cublas.nrm2(X_vec)
grad_norm = cupy.maximum(frobenius_norm(gradient), 1e-12)
gradient *= cupy.minimum(threshold, grad_norm) / grad_norm
return gradient
def seq2col(self, seq, nW, *, lengths=None):
"""Given an (M, N) sequence of vectors, return an (M, N*(nW*2+1)) sequence.
The new sequence is constructed by concatenating nW preceding and succeeding
vectors onto each column in the sequence, to extract a window of features.
"""
if seq.dtype in ("float32", "float64") and (
lengths is None or lengths.dtype == "int32"
):
return _custom_kernels.seq2col(seq, nW, lengths=lengths)
else:
return super().seq2col(seq, nW, lengths=lengths)
def backprop_seq2col(self, dY, nW, *, lengths=None):
if dY.dtype in ("float32", "float64") and (
lengths is None or lengths.dtype == "int32"
):
return _custom_kernels.backprop_seq2col(dY, nW, lengths=lengths)
else:
return super().backprop_seq2col(dY, nW, lengths=lengths)
def reduce_mean(self, X, lengths):
if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
return _custom_kernels.reduce_mean(X, lengths=lengths)
else:
super().reduce_mean(X, lengths)
def backprop_reduce_mean(self, d_means, lengths):
if d_means.dtype in ("float32", "float64") and lengths.dtype == "int32":
return _custom_kernels.backprop_reduce_mean(d_means, lengths)
else:
super().backprop_reduce_mean(d_means, lengths)
def reduce_max(self, X, lengths):
if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
return _custom_kernels.reduce_max(X, lengths)
else:
super().reduce_max(X, lengths)
def backprop_reduce_max(self, d_maxes, which, lengths):
if (
d_maxes.dtype in ("float32", "float64")
and which.dtype == "int32"
and lengths.dtype == "int32"
):
return _custom_kernels.backprop_reduce_max(d_maxes, which, lengths)
else:
super().backprop_reduce_max(d_maxes, which, lengths)
def reduce_sum(self, X, lengths):
if X.dtype in ("float32", "float64") and lengths.dtype == "int32":
return _custom_kernels.reduce_sum(X, lengths)
else:
return super().reduce_sum(X, lengths)
def backprop_reduce_sum(self, d_sums, lengths):
if d_sums.dtype in ("float32", "float64") and lengths.dtype == "int32":
return _custom_kernels.backprop_reduce_sum(d_sums, lengths)
else:
return super().backprop_reduce_sum(d_sums, lengths)
def hash(self, ids, seed):
return _custom_kernels.hash(ids, seed)
def scatter_add(self, table, indices, values):
self._xp2.scatter_add(table, indices, values)
def adam(
self, weights, gradient, mom1, mom2, beta1, beta2, eps, learn_rate, mod_rate=1.0
):
_check_compatible_shape(weights, gradient)
_check_compatible_shape(weights, mom1)
_check_compatible_shape(weights, mom2)
adam_kernel(
gradient, learn_rate, 1 - beta1, 1 - beta2, eps, weights, mom1, mom2
)
gradient.fill(0)
return weights, gradient, mom1, mom2
def position_encode(self, N, D, period=10000, out=None):
positions = NumpyOps().position_encode(N, D, period=period, out=out)
return self.asarray(positions)
if cupy is not None:
adam_kernel = cupy.ElementwiseKernel(
"T grad, T lr, T one_minus_beta1, T one_minus_beta2, T eps",
"T param, T m, T v",
"""m += one_minus_beta1 * (grad - m);
v += one_minus_beta2 * (grad * grad - v);
param -= lr * m / (sqrt(v) + eps);""",
"adam",
)
else:
adam_kernel = None
def _check_compatible_shape(u, v):
if u.shape != v.shape:
msg = f"arrays have incompatible shapes: {u.shape} and {v.shape}"
raise ValueError(msg)
|