1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
# cython: infer_types=True
# cython: cdivision=True
cimport cython
from libc.stdint cimport int32_t
from libc.string cimport memset, memcpy
from cymem.cymem cimport Pool
ctypedef float weight_t
DEF USE_BLAS = False
DEF EPS = 1e-5
IF USE_BLAS:
cimport blis.cy
cdef extern from "math.h" nogil:
weight_t exp(weight_t x)
weight_t sqrt(weight_t x)
cdef class Matrix:
cdef readonly Pool mem
cdef weight_t* data
cdef readonly int32_t nr_row
cdef readonly int32_t nr_col
cdef class Vec:
@staticmethod
cdef inline int arg_max(const weight_t* scores, const int n_classes) nogil:
if n_classes == 2:
return 0 if scores[0] > scores[1] else 1
cdef int i
cdef int best = 0
cdef weight_t mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best
@staticmethod
cdef inline weight_t max(const weight_t* x, int32_t nr) nogil:
if nr == 0:
return 0
cdef int i
cdef weight_t mode = x[0]
for i in range(1, nr):
if x[i] > mode:
mode = x[i]
return mode
@staticmethod
cdef inline weight_t sum(const weight_t* vec, int32_t nr) nogil:
cdef int i
cdef weight_t total = 0
for i in range(nr):
total += vec[i]
return total
@staticmethod
cdef inline weight_t norm(const weight_t* vec, int32_t nr) nogil:
cdef weight_t total = 0
for i in range(nr):
total += vec[i] ** 2
return sqrt(total)
@staticmethod
cdef inline void add(weight_t* output, const weight_t* x,
weight_t inc, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
Vec.add_i(output, inc, nr)
@staticmethod
cdef inline void add_i(weight_t* vec, weight_t inc, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] += inc
@staticmethod
cdef inline void mul(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.mul_i(output, scal, nr)
@staticmethod
cdef inline void mul_i(weight_t* vec, weight_t scal, int32_t nr) nogil:
cdef int i
IF USE_BLAS:
blis.cy.scalv(BLIS_NO_CONJUGATE, nr, scal, vec, 1)
ELSE:
for i in range(nr):
vec[i] *= scal
@staticmethod
cdef inline void pow(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.pow_i(output, scal, nr)
@staticmethod
cdef inline void pow_i(weight_t* vec, const weight_t scal, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] **= scal
@staticmethod
@cython.cdivision(True)
cdef inline void div(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.div_i(output, scal, nr)
@staticmethod
@cython.cdivision(True)
cdef inline void div_i(weight_t* vec, const weight_t scal, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] /= scal
@staticmethod
cdef inline void exp(weight_t* output, const weight_t* vec, int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.exp_i(output, nr)
@staticmethod
cdef inline void exp_i(weight_t* vec, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] = exp(vec[i])
@staticmethod
cdef inline void reciprocal_i(weight_t* vec, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] = 1.0 / vec[i]
@staticmethod
cdef inline weight_t mean(const weight_t* X, int32_t nr_dim) nogil:
cdef weight_t mean = 0.
for x in X[:nr_dim]:
mean += x
return mean / nr_dim
@staticmethod
cdef inline weight_t variance(const weight_t* X, int32_t nr_dim) nogil:
# See https://www.johndcook.com/blog/standard_deviation/
cdef double m = X[0]
cdef double v = 0.
for i in range(1, nr_dim):
diff = X[i]-m
m += diff / (i+1)
v += diff * (X[i] - m)
return v / nr_dim
cdef class VecVec:
@staticmethod
cdef inline void add(weight_t* output,
const weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.add_i(output, y, scale, nr)
@staticmethod
cdef inline void add_i(weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr) nogil:
cdef int i
IF USE_BLAS:
blis.cy.axpyv(BLIS_NO_CONJUGATE, nr, scale, y, 1, x, 1)
ELSE:
for i in range(nr):
x[i] += y[i] * scale
@staticmethod
cdef inline void batch_add_i(weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr, int32_t nr_batch) nogil:
# For fixed x, matrix of y
cdef int i, _
for _ in range(nr_batch):
VecVec.add_i(x,
y, scale, nr)
y += nr
@staticmethod
cdef inline void add_pow(weight_t* output,
const weight_t* x, const weight_t* y, weight_t power, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.add_pow_i(output, y, power, nr)
@staticmethod
cdef inline void add_pow_i(weight_t* x,
const weight_t* y, weight_t power, int32_t nr) nogil:
cdef int i
for i in range(nr):
x[i] += y[i] ** power
@staticmethod
cdef inline void mul(weight_t* output,
const weight_t* x, const weight_t* y, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.mul_i(output, y, nr)
@staticmethod
cdef inline void mul_i(weight_t* x,
const weight_t* y, int32_t nr) nogil:
cdef int i
for i in range(nr):
x[i] *= y[i]
@staticmethod
cdef inline weight_t dot(
const weight_t* x, const weight_t* y, int32_t nr) nogil:
cdef int i
cdef weight_t total = 0
for i in range(nr):
total += x[i] * y[i]
return total
@staticmethod
cdef inline int arg_max_if_true(
const weight_t* scores, const int* is_valid, const int n_classes) nogil:
cdef int i
cdef int best = -1
for i in range(n_classes):
if is_valid[i] and (best == -1 or scores[i] > scores[best]):
best = i
return best
@staticmethod
cdef inline int arg_max_if_zero(
const weight_t* scores, const weight_t* costs, const int n_classes) nogil:
cdef int i
cdef int best = -1
for i in range(n_classes):
if costs[i] == 0 and (best == -1 or scores[i] > scores[best]):
best = i
return best
cdef class Mat:
@staticmethod
cdef inline void mean_row(weight_t* Ex,
const weight_t* mat, int32_t nr_row, int32_t nr_col) nogil:
memset(Ex, 0, sizeof(Ex[0]) * nr_col)
for i in range(nr_row):
VecVec.add_i(Ex, &mat[i * nr_col], 1.0, nr_col)
Vec.mul_i(Ex, 1.0 / nr_row, nr_col)
@staticmethod
cdef inline void var_row(weight_t* Vx,
const weight_t* mat, const weight_t* Ex,
int32_t nr_row, int32_t nr_col, weight_t eps) nogil:
# From https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
if nr_row == 0 or nr_col == 0:
return
cdef weight_t sum_, sum2
for i in range(nr_col):
sum_ = 0.0
sum2 = 0.0
for j in range(nr_row):
x = mat[j * nr_col + i]
sum2 += (x - Ex[i]) ** 2
sum_ += x - Ex[i]
Vx[i] = (sum2 - sum_**2 / nr_row) / nr_row
Vx[i] += eps
|