1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
|
# cython: cdivision=True
# cython: infer_types=True
# cython: profile=True
from typing import Optional
from collections.abc import Sized
import numpy
cimport cython
from libc.string cimport memcpy, memset
from libc.stdlib cimport calloc, malloc, free
from libc.stdint cimport uint32_t, uint64_t
from libc.string cimport memcpy
from libc.math cimport isnan
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from murmurhash.mrmr cimport hash64
cimport numpy as np
cimport blis.cy
from .. import registry
from ..util import copy_array, get_array_module
from ..types import DeviceTypes, DTypes, Shape, ArrayXd
from .cblas cimport CBlas, daxpy, saxpy
from .linalg cimport VecVec, Vec
from .ops import Ops
try:
import blis.py
has_blis = True
except ImportError:
has_blis = False
ctypedef float weight_t
cdef extern from "math.h":
float logf(float x) nogil
float sqrtf(float x) nogil
float expf(float x) nogil
float tanhf(float x) nogil
float sinf(float x) nogil
float cosf(float x) nogil
@registry.ops("NumpyOps")
class NumpyOps(Ops):
name = "numpy"
xp = numpy
def __init__(
self,
device_type: DeviceTypes = "cpu",
device_id: int = -1,
*,
use_blis: bool = True
) -> None:
self.device_type = device_type
self.device_id = device_id
self.use_blis = use_blis
if self.use_blis and not has_blis:
raise ValueError("BLIS support requires blis: pip install blis")
def asarray(self, data, dtype=None):
if isinstance(data, self.xp.ndarray):
array = data
elif hasattr(data, 'numpy'):
# Handles PyTorch Tensor
array = data.numpy()
elif hasattr(data, "get"):
array = data.get()
else:
array = self.xp.array(data)
if dtype is not None:
array = array.astype(dtype=dtype, copy=False)
return array
def alloc(self, shape: Shape, *, dtype: Optional[DTypes] = "float32", zeros: bool = True) -> ArrayXd:
if zeros:
return self.xp.zeros(shape, dtype=dtype)
else:
return self.xp.empty(shape, dtype=dtype)
def cblas(self) -> CBlas:
return CBlas()
def gemm(self, np.ndarray x, np.ndarray y, *, np.ndarray out=None, trans1=False, trans2=False):
if x.ndim != 2:
raise ValueError(f"Provided 'x' array should be 2-dimensional, but found {x.ndim} dimension(s).")
if y.ndim != 2:
raise ValueError(f"Provided 'y' array should be 2-dimensional, but found {y.ndim} dimension(s).")
if not self.use_blis: # delegate to base Ops
return super().gemm(x, y, out=out, trans1=trans1, trans2=trans2)
x = self.as_contig(x)
y = self.as_contig(y)
if out is not None:
out = self.as_contig(out)
return blis.py.gemm(x, y, out=out, trans1=trans1, trans2=trans2, beta=0.)
def relu(self, np.ndarray X, inplace=False):
cdef np.ndarray Y
if X.dtype == "float32":
Y = _inplace_or_copy(X, inplace)
cpu_relu(<float *>Y.data, <int>Y.size)
return Y
elif X.dtype == "float64":
Y = _inplace_or_copy(X, inplace)
cpu_relu(<double *>Y.data, <int>Y.size)
return Y
else:
return super().relu(X, inplace=inplace)
def backprop_relu(self, np.ndarray dY, np.ndarray Y, inplace=False):
_check_compatible_shape(dY, Y)
cdef size_t size = Y.size
cdef weight_t* dX_ptr
cdef const weight_t* Y_ptr = <const weight_t*>Y.data
cdef np.ndarray dX
if dY.dtype == "float32" and Y.dtype == "float32":
dX = _inplace_or_copy(dY, inplace)
dX_ptr = <weight_t*>dX.data
for i in range(size):
if Y_ptr[i] <= 0:
dX_ptr[i] = 0.
return dX
else:
return super().backprop_relu(dY, Y, inplace)
def lstm_forward_training(
self,
np.ndarray params,
np.ndarray H0,
np.ndarray C0,
np.ndarray X,
np.ndarray size_at_t
):
assert H0.shape[0] == C0.shape[0]
assert H0.shape[1] == C0.shape[1]
Y, fwd_state = lstm_forward_training(params, H0, C0, X, size_at_t)
return Y, fwd_state
def lstm_forward_inference(
self,
np.ndarray params,
np.ndarray H0,
np.ndarray C0,
np.ndarray X,
np.ndarray size_at_t
):
Y, _ = lstm_forward_training(params, H0, C0, X, size_at_t)
return Y
def backprop_lstm(
self, np.ndarray dY, np.ndarray lengths, np.ndarray params, fwd_state
):
dX, d_params = backprop_lstm(dY, lengths, params, fwd_state)
return dX, d_params
def maxout(self, reals3d_ft X):
cdef int B = X.shape[0]
cdef int O = X.shape[1]
cdef int P = X.shape[2]
cdef np.ndarray best
cdef np.ndarray which = self.alloc(shape=(B, O), dtype='int32', zeros=False)
if reals3d_ft is float3d_t:
best = self.alloc(shape=(B, O), dtype="float32", zeros=False)
if len(X) > 0:
cpu_maxout(<float*>best.data, <int*>which.data,
&X[0, 0, 0], B, O, P)
else:
best = self.alloc(shape=(B, O), dtype="float64", zeros=False)
if len(X) > 0:
cpu_maxout(<double*>best.data, <int*>which.data,
&X[0, 0, 0], B, O, P)
return best, which
def backprop_maxout(self, reals2d_ft dY, int[:, ::1] which, int P):
cdef int B = dY.shape[0]
cdef int O = dY.shape[1]
cdef np.ndarray dX
if reals2d_ft == float2d_t:
dX = numpy.zeros((B, O, P), dtype='float32')
cpu_backprop_maxout(<float*>dX.data, <float*>&dY[0, 0], &which[0, 0], B, O, P)
else:
dX = numpy.zeros((B, O, P), dtype='float64')
cpu_backprop_maxout(<double*>dX.data, <double*>&dY[0, 0], &which[0, 0], B, O, P)
return dX
def mish(self, np.ndarray X, threshold=20.0, inplace: bool = False):
cdef np.ndarray Y
if X.dtype == "float32":
Y = _inplace_or_copy(X, inplace)
cpu_mish(<float *>Y.data, <int>Y.size, <float>threshold)
return Y
elif X.dtype == "float64":
Y = _inplace_or_copy(X, inplace)
cpu_mish(<double *>Y.data, <int>Y.size, <double>threshold)
return Y
else:
return super().mish(X, inplace=inplace)
def backprop_mish(self, np.ndarray dY, np.ndarray X, threshold=20.0, inplace=False):
_check_compatible_shape(dY, X)
cdef np.ndarray dX
if dY.dtype == "float32" and X.dtype == "float32":
dX = _inplace_or_copy(dY, inplace)
cpu_backprop_mish(<float*>dX.data, <float*>X.data, <int>X.size, <float>threshold)
return dX
elif dY.dtype == "float64" and X.dtype == "float64":
dX = _inplace_or_copy(dY, inplace)
cpu_backprop_mish(<double*>dX.data, <double*>X.data, <int>X.size, <double>threshold)
return dX
else:
return super().backprop_mish(dY, X, threshold, inplace)
def seq2col(self, np.ndarray seq, int nW, *, int[::1] lengths=None):
"""Given an (M, N) sequence of vectors, return an (M, N*(nW*2+1))
sequence. The new sequence is constructed by concatenating nW preceding
and succeeding vectors onto each column in the sequence, to extract a
window of features.
"""
# Note: the type of seq should be changed to reals2d_ft once
# cython/cython#4697 is fixed. The following checks can then be
# removed, because they are guaranteed by the reals2d_ft
# type.
if seq.ndim != 2:
msg = f"seq2col requires sequence array of dimensionality 2, was {seq.ndim}"
raise ValueError(msg)
if not seq.flags.c_contiguous:
msg = f"seq2col requires sequence array that is in C order and contiguous"
raise ValueError(msg)
cdef int B = seq.shape[0]
cdef int I = seq.shape[1]
lengths = check_seq2col_lengths(self, lengths, B)
cdef int nL = lengths.shape[0]
cdef np.ndarray cols
if seq.dtype == "float32":
cols = self.alloc((B, (2*nW + 1) * I), dtype="float32")
if seq.size != 0 and lengths.size != 0:
seq2col(<float*>cols.data, <float*>seq.data, &lengths[0], nW, B, I, nL)
return cols
elif seq.dtype == "float64":
cols = self.alloc((B, (2*nW + 1) * I), dtype="float64")
if seq.size != 0 and lengths.size != 0:
seq2col(<double*>cols.data, <double*>seq.data, &lengths[0], nW, B, I, nL)
return cols
else:
return super().seq2col(seq, nW, lengths=lengths)
def backprop_seq2col(self, np.ndarray dY, int nW, *, int[::1] lengths=None):
# Note: the type of dY should be changed to reals2d_ft once
# cython/cython#4697 is fixed. The following checks can then be
# removed, because they are guaranteed by the reals2d_ft
# type.
if dY.ndim != 2:
msg = f"backprop_seq2col requires gradient array of dimensionality 2, was {dY.ndim}"
raise ValueError(msg)
if not dY.flags.c_contiguous:
msg = f"backprop_seq2col requires gradient array that is in C order and contiguous"
raise ValueError(msg)
cdef int B = dY.shape[0]
cdef int nF = nW*2+1
cdef int I = dY.shape[1] / nF
lengths = check_seq2col_lengths(self, lengths, B)
cdef int nL = lengths.shape[0]
cdef np.ndarray dX
if dY.dtype == "float32":
dX = self.alloc((B, I), dtype='float32')
if dY.size != 0 and lengths.size != 0:
backprop_seq2col(<float*>dX.data, <float*>dY.data, &lengths[0], B, I, nW, nL)
return dX
elif dY.dtype == "float64":
dX = self.alloc((B, I), dtype='float64')
if dY.size != 0 and lengths.size != 0:
backprop_seq2col(<double*>dX.data, <double*>dY.data, &lengths[0], B, I, nW, nL)
return dX
else:
return super().backprop_seq2col(dY, nW, lengths=lengths)
@cython.boundscheck(False)
@cython.wraparound(False)
def hash(self, const uint64_t[::1] ids, uint32_t seed):
"""Hash a sequence of 64-bit keys into a table with 4 32-bit keys."""
# Written to mirror the GPU implementation
cdef np.ndarray[uint32_t, ndim=2] keys = self.alloc((ids.shape[0], 4), dtype='uint32')
cdef int i
cdef uint32_t* dest = <uint32_t*>keys.data
for i in range(len(ids)):
MurmurHash3_x86_128_uint64(ids[i], seed, &dest[i*4])
return keys
def reduce_mean(self, reals2d_ft X, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = X.shape[1]
cdef int T = X.shape[0]
assert B != 0
assert O != 0
cdef np.ndarray means
if reals2d_ft is float2d_t:
means = numpy.zeros(shape=(B, O), dtype="float32")
cpu_reduce_mean(<float *>means.data, &X[0, 0], &lengths[0], B, T, O)
else:
means = numpy.zeros(shape=(B, O), dtype="float64")
cpu_reduce_mean(<double *>means.data, &X[0, 0], &lengths[0], B, T, O)
return means
def backprop_reduce_mean(self, reals2d_ft d_means, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = d_means.shape[1]
cdef int T = 0
for length in lengths[:B]:
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
T += length
assert T != 0
assert O != 0
cdef np.ndarray dX
if reals2d_ft is float2d_t:
dX = numpy.zeros((T, O), dtype="float32")
cpu_backprop_reduce_mean(<float *>dX.data, &d_means[0,0], &lengths[0], B, T, O)
else:
dX = numpy.zeros((T, O), dtype="float64")
cpu_backprop_reduce_mean(<double *>dX.data, &d_means[0,0], &lengths[0], B, T, O)
return dX
def reduce_sum(self, reals2d_ft X, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = X.shape[1]
cdef int T = X.shape[0]
assert B != 0
assert O != 0
cdef np.ndarray sums
if reals2d_ft is float2d_t:
sums = numpy.zeros(shape=(B, O), dtype="float32")
cpu_reduce_sum(<float *>sums.data, &X[0, 0], &lengths[0], B, T, O)
else:
sums = numpy.zeros(shape=(B, O), dtype="float64")
cpu_reduce_sum(<double *>sums.data, &X[0, 0], &lengths[0], B, T, O)
return sums
def backprop_reduce_sum(self, reals2d_ft d_sums, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = d_sums.shape[1]
cdef int T = 0
for length in lengths[:B]:
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
T += length
assert T != 0
assert O != 0
cdef np.ndarray dX
if reals2d_ft is float2d_t:
dX = numpy.zeros((T, O), dtype="float32")
cpu_backprop_reduce_sum(<float *>dX.data, &d_sums[0,0], &lengths[0], B, T, O)
else:
dX = numpy.zeros((T, O), dtype="float64")
cpu_backprop_reduce_sum(<double *>dX.data, &d_sums[0,0], &lengths[0], B, T, O)
return dX
def reduce_max(self, reals2d_ft X, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = X.shape[1]
cdef int T = X.shape[0]
assert B != 0
assert O != 0
cdef np.ndarray maxes
# Needs to be zero-initialized as we start by assuming that the first element is the max value.
cdef np.ndarray which = self.alloc(shape=(B, O), dtype="i", zeros=True)
if reals2d_ft is float2d_t:
maxes = self.alloc(shape=(B, O), dtype="float32", zeros=False)
cpu_reduce_max(<float*>maxes.data, <int*>which.data, &X[0, 0], &lengths[0], B, T, O)
else:
maxes = self.alloc(shape=(B, O), dtype="float64", zeros=False)
cpu_reduce_max(<double*>maxes.data, <int*>which.data, &X[0, 0], &lengths[0], B, T, O)
return maxes, which
def backprop_reduce_max(self, reals2d_ft d_maxes, int[:, ::1] which, int[::1] lengths):
cdef int B = lengths.shape[0]
cdef int O = d_maxes.shape[1]
cdef int T = 0
for length in lengths[:B]:
if length <= 0:
raise ValueError(f"all sequence lengths must be > 0, got {length}")
T += length
assert T != 0
assert O != 0
cdef np.ndarray dX
if reals2d_ft is float2d_t:
dX = numpy.zeros((T, O), dtype="float32")
cpu_backprop_reduce_max(<float *>dX.data, &d_maxes[0,0], &which[0, 0],
&lengths[0], B, T, O)
else:
dX = numpy.zeros((T, O), dtype="float64")
cpu_backprop_reduce_max(<double *>dX.data, &d_maxes[0,0], &which[0, 0],
&lengths[0], B, T, O)
return dX
def gather_add(self, reals2d_ft table, ints2d_ft indices):
cdef CBlas cblas = self.cblas()
rows = indices.shape[0]
dims = table.shape[1]
cdef np.ndarray output
if reals2d_ft is float2d_t:
output = self.xp.zeros((rows, dims), dtype="float32")
cpu_gather_add(saxpy(cblas), <float *>output.data, &table[0, 0], &indices[0, 0],
table.shape[0], dims, rows, indices.shape[1])
else:
output = self.xp.zeros((rows, dims), dtype="float64")
cpu_gather_add(daxpy(cblas), <double *>output.data, &table[0, 0], &indices[0, 0],
table.shape[0], dims, rows, indices.shape[1])
return output
def scatter_add(self, np.ndarray table, np.ndarray indices, np.ndarray values):
if table.dtype == 'float32' \
and indices.dtype == 'int32' \
and values.dtype == 'float32' \
and table.flags.c_contiguous \
and indices.flags.c_contiguous \
and values.flags.c_contiguous \
and indices.ndim == 1 \
and table.ndim == 2 \
and values.ndim == 2 \
and values.shape[0] == indices.shape[0] \
and values.shape[1] == table.shape[1]:
cpu_scatter_add(<float*>table.data,
<int*>indices.data, <float*>values.data,
indices.shape[0], table.shape[1])
else:
self.xp.add.at(table, indices, values)
@cython.boundscheck(False)
@cython.wraparound(False)
def adam(self, np.ndarray[np.float32_t] weights, np.ndarray[np.float32_t] gradient,
np.ndarray[np.float32_t] mom1, np.ndarray[np.float32_t] mom2,
const float beta1, const float beta2, float eps,
float learn_rate, float mod_rate=1.):
_check_compatible_shape(weights, gradient)
_check_compatible_shape(weights, mom1)
_check_compatible_shape(weights, mom2)
_adam_momentum(<float*>gradient.data, <float*>mom1.data, <float*>mom2.data,
weights.shape[0], beta1, beta2, eps, learn_rate)
VecVec.add_i(<float*>weights.data,
<float*>gradient.data, -learn_rate, weights.shape[0])
memset(<float*>gradient.data, 0, gradient.size * sizeof(float))
return weights, gradient, mom1, mom2
def ngrams(self, int n, const uint64_t[::1] keys):
if n < 1:
return self.alloc((0,), dtype="uint64")
keys_ = <uint64_t*>&keys[0]
length = max(0, keys.shape[0]-(n-1))
cdef np.ndarray output_ = self.alloc((length,), dtype="uint64")
output = <uint64_t*>output_.data
for i in range(keys.shape[0]-(n-1)):
output[i] = hash64(&keys_[i], n*sizeof(keys_[0]), 0)
return output_
def position_encode(self, int N, int D, int period=10000, out=None):
cdef np.ndarray out_
if out is None:
out_ = self.alloc((N, D), zeros=False)
else:
out_ = out
assert out_.shape[0] == N
assert out_.shape[1] == D
cpu_position_encode(<float*>out_.data, period, N, D)
return out_
def check_seq2col_lengths(ops, lengths, B):
if lengths is None:
lengths = ops.asarray1i([B])
else:
assert ops.xp.all(ops.xp.array(lengths) >= 0), "All sequence lengths must be >= 0"
assert ops.xp.sum(lengths) == B, "The lengths must sum up to the batch length"
return lengths
def cpu_clip_gradient(weight_t[::1] gradient, weight_t threshold):
grad_norm = Vec.norm(&gradient[0], gradient.shape[0])
if grad_norm >= threshold:
Vec.mul_i(&gradient[0], threshold / grad_norm, gradient.shape[0])
def add_gradient_noise(float[::1] gradient, weight_t noise_level,
weight_t timestep):
cdef weight_t variance = noise_level / ((1 + timestep) ** 0.55)
if variance >= 0.000001:
gradient += numpy.asarray(
numpy.random.normal(scale=variance, loc=0., size=len(gradient)),
dtype='float32')
cdef void cpu_position_encode(float* output, float period, int N, int D) nogil:
cdef float pos, d
cdef int j
cdef float dimensions = D
for i in range(N):
pos = i
j = 0
d = 0
while (j+1) < D:
d = j
output[j] = sinf(pos / period ** (2 * d / dimensions))
output[j+1] = cosf(pos / period ** (2 * d / dimensions))
j += 2
if j < D:
output[j] = sinf(pos / period ** (2 * d / dimensions))
output += D
cdef void cpu_scatter_add(float* dest,
const int* indices, const float* src,
int nr_id, int nr_col) nogil:
cdef int i
for i in range(nr_id):
id_ = indices[i]
if id_ >= 0:
VecVec.add_i(&dest[id_*nr_col],
&src[i*nr_col], 1., nr_col)
@cython.cdivision(True)
cdef void _adam_momentum(weight_t* gradient, weight_t* mom1, weight_t* mom2,
int nr_weight, weight_t beta1, weight_t beta2, weight_t eps,
weight_t learn_rate) nogil:
# Calculate Adam on CPU, fused.
# Assumes the learning rate adjustment is calculated by the caller;
# a_t = learn_rate * sqrt(1-beta2**timestep) / (1-beta1**timestep)
cdef weight_t one_minus_beta1 = 1-beta1
cdef weight_t one_minus_beta2 = 1-beta2
cdef weight_t m1, m2, g
cdef int i
# Blockwise implementation is a bit faster. Adam is slooow :(
cdef weight_t[64] buff
cdef int steps = nr_weight // 64
if steps * 64 < nr_weight:
steps += 1
idx = 0
for i in range(steps):
step_size = min(64, nr_weight-idx)
Vec.mul_i(mom1, beta1, step_size)
VecVec.add_i(mom1, gradient, one_minus_beta1, step_size)
Vec.mul_i(mom2, beta2, step_size)
for j in range(step_size):
mom2[j] += one_minus_beta2 * gradient[j] ** 2
for j in range(step_size):
buff[j] = sqrtf(mom2[j])
for j in range(step_size):
buff[j] += eps
for j in range(step_size):
buff[j] = mom1[j] / buff[j]
for j in range(step_size):
gradient[j] = buff[j]
mom1 += step_size
mom2 += step_size
gradient += step_size
idx += step_size
@cython.cdivision(True)
cdef void cpu_update_averages(weight_t* ema,
const weight_t* weights, int nr_weight, weight_t t, weight_t max_decay) nogil:
cdef weight_t decay = (1.0 + t) / (10.0 + t)
if decay > max_decay:
decay = max_decay
cdef weight_t one_minus_decay = 1-decay
cdef int i
for i in range(nr_weight): # num_threads=4, schedule='static'):
ema[i] -= one_minus_decay * (ema[i] - weights[i])
def lstm_forward_training(
np.ndarray params, np.ndarray c_init, np.ndarray h_init,
np.ndarray X, np.ndarray lengths
):
xp = numpy
depth = c_init.shape[0]
dirs = c_init.shape[1]
nO = c_init.shape[2]
N = X.shape[0]
nI = X.shape[1]
nT = lengths.shape[0]
cdef int batch_size = lengths[0]
# Preallocate these so we can pass them through for loop.
cdef np.ndarray G = xp.zeros((depth, dirs, X.shape[0], nO * 4), dtype="f")
cdef np.ndarray Y = xp.zeros((depth, dirs, X.shape[0], nO), dtype="f")
cdef np.ndarray C = xp.zeros((depth, dirs, X.shape[0], nO), dtype="f")
cdef np.ndarray Yt2 = numpy.zeros((batch_size, nO), dtype="f")
cdef np.ndarray Ct2 = numpy.zeros((batch_size, nO), dtype="f")
cdef int params_i = 0
cdef int seq_i = 0
orig_X = X
cdef int i
cdef np.ndarray Yid
cdef np.ndarray Cid
cdef np.ndarray Gid
cdef np.ndarray Wx
cdef np.ndarray Wh
cdef np.ndarray bias
for i in range(depth):
nI = X.shape[1]
for d in range(dirs):
# The inits are shaped (depth, dirs, nO). We add the internal dimension
# to make them set correctly.
Yt2[:] = h_init[i, d].reshape((1, nO))
Ct2[:] = c_init[i, d].reshape((1, nO))
layer_params, params_i = _split_weights(params, i, nO, nI, params_i)
Wx, Wh, bias = _transpose_weights(layer_params)
Yid = Y[i, d]
Cid = C[i, d]
Gid = G[i, d]
_lstm_forward_training(
d, N, nO, nI, nT,
Gid,
<float*>Yid.data,
<float*>Cid.data,
<float*>X.data,
<float*>Wx.data,
<float*>Wh.data,
bias,
<int*>lengths.data,
<float*>Yt2.data,
<float*>Ct2.data
)
H = Y[i].transpose((1, 0, 2)).reshape((N, -1))
if dirs == 2:
H = xp.ascontiguousarray(H)
X = H
return H, (Y, G, C, orig_X)
cdef int _lstm_forward_training(
int d, int N, int nO, int nI, int nT,
np.ndarray G,
float* Y,
float* C,
float* X,
float* Wx,
float* Wh,
np.ndarray bias,
int* lengths,
float* Yt2,
float* Ct2,
) except -1:
cdef double one = 1.0
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
N, nO*4, nI,
one,
X, nI, 1,
Wx, nI, 1,
one,
<float*>G.data, nO*4, 1
)
cdef int t, batch_size
cdef int seq_i = 0 if d == 0 else N
cdef int i, j
cdef np.ndarray Gt3_
for t in range(nT):
if d == 0:
batch_size = lengths[t]
else:
batch_size = lengths[nT-(t+1)]
seq_i -= batch_size
# Prepare the inputs
Yt3 = &Y[seq_i*nO]
Ct3 = &C[seq_i*nO]
Gt3_ = G[seq_i : seq_i+batch_size]
Gt3 = <float*>Gt3_.data
# Now do the actual calculation
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.TRANSPOSE,
batch_size, nO*4, nO,
one,
Yt2, nO, 1,
Wh, nO, 1,
one,
Gt3, nO*4, 1
)
# This is super weird: if we remove this add, it gets slower? I guess
# it does cache prefetching or something?
# It's annoying though --- it means I can't really refactor further,
# because speed goes down if I remove this.
Gt3_ += bias
#for i in range(batch_size):
# for j in range(nO*4):
# Gt3[i*nO*4+j] += bias[j]
cpu_lstm_activate_fwd(Gt3,
batch_size, nO)
cpu_lstm_gates_fwd(Yt3, Ct3,
Gt3, Ct2, batch_size, nO)
if d == 0:
seq_i += batch_size
# We need to keep a full-sized array here, padded with the sequence-start
# values. This isn't necessary for the l2r part, but for the r2l part
# it's necessary, as we otherwise would have the previous step smaller
# than the current.
memcpy(Yt2, Yt3, sizeof(Yt3[0]) * batch_size * nO)
memcpy(Ct2, Ct3, sizeof(Ct3[0]) * batch_size * nO)
def backprop_lstm(np.ndarray dY, np.ndarray lengths, np.ndarray params, fwd_state):
xp = numpy
cdef np.ndarray Y
cdef np.ndarray G
cdef np.ndarray C
cdef np.ndarray X
cdef np.ndarray Yid
cdef np.ndarray Cid
cdef np.ndarray Gid
cdef np.ndarray Wx, Wh, bias
cdef np.ndarray dWx, dWh, d_bias
cdef np.ndarray dYid
Y, G, C, X = fwd_state
cdef int depth = C.shape[0]
cdef int dirs = C.shape[1]
cdef int N = C.shape[2]
cdef int nO = C.shape[3]
cdef int nI = X.shape[1]
cdef int batch_size = lengths[0]
cdef int nT = lengths.shape[0]
# We don't need to store all the cells for all the layers.
cdef np.ndarray dC = xp.zeros((N, nO), dtype=C.dtype)
cdef np.ndarray dG = xp.zeros((N, nO*4), dtype=C.dtype)
cdef np.ndarray d_params = xp.zeros((params.shape[0],), dtype=params.dtype)
# Collect the params and slices. It makes it a bit easier to get the indexing
# right, when we're iterating backwards.
params_i = 0
all_layer_params = []
for i in range(depth):
all_layer_params.append([])
n_inputs = nI if i == 0 else (nO * dirs)
for d in range(dirs):
layer_params, params_i = _split_weights(params, i, nO, n_inputs, params_i)
layer_params = _transpose_weights(layer_params)
all_layer_params[-1].append((layer_params, params_i))
params_i = 0
all_layer_grads = []
for i in range(depth):
all_layer_grads.append([])
n_inputs = nI if i == 0 else (nO * dirs)
for d in range(dirs):
layer_grads, params_i = _split_weights(params, i, nO, n_inputs, params_i)
layer_grads = _transpose_weights(layer_grads)
all_layer_grads[-1].append((layer_grads, params_i))
# Similarly, we want to compute the indices first
indices = []
seq_i = 0
for batch_size in lengths:
indices.append((seq_i, batch_size))
seq_i += batch_size
cdef np.ndarray dX
Xs = [X] + [Y[i].transpose(1, 0, 2).reshape((N, -1)) for i in range(depth-1)]
dXs = [xp.zeros((X.shape[0], X.shape[1]), dtype=X.dtype) for X in Xs]
# Okay, now do the actual looping
for i in reversed(range(depth)):
dY = dY.reshape((N, dirs, nO)).transpose((1, 0, 2))
dX = dXs[i]
X = Xs[i]
if dirs >= 2:
dY = numpy.ascontiguousarray(dY)
for d in range(dirs):
Wx, Wh, bias = all_layer_params[i][d][0]
dWx, dWh, d_bias = all_layer_grads[i][d][0]
assert Wx.shape[1] == dWx.shape[1] == X.shape[1] == dX.shape[1], (Wx.shape[1], dWx.shape[1], X.shape[1], dX.shape[1])
dYid = dY[d]
dC.fill(0.)
dG.fill(0.)
Cid = C[i, d]
Gid = G[i, d]
Yid = Y[i, d]
assert (Cid.shape[0], Cid.shape[1]) == (N, nO)
assert (Yid.shape[0], Yid.shape[1]) == (N, nO)
assert (Gid.shape[0], Gid.shape[1]) == (N, nO*4)
assert (dYid.shape[0], dYid.shape[1]) == (N, nO)
assert (dC.shape[0], dC.shape[1]) == (N, nO)
assert (dG.shape[0], dG.shape[1]) == (N, nO*4)
_lstm_backward_training(d, N, nO, dX.shape[1], nT,
<float*>dX.data,
<float*>dYid.data,
<float*>dC.data,
<float*>dG.data,
<float*>dWx.data,
<float*>dWh.data,
<float*>d_bias.data,
<float*>Cid.data,
<float*>Gid.data,
<float*>Yid.data,
<float*>X.data,
<float*>Wx.data,
<float*>Wh.data,
list(indices)
)
dY = dX
assert dX.shape[1] == X.shape[1]
grad_parts = []
for layer_grads in all_layer_grads:
for dir_grads, _ in layer_grads:
grad_parts.append(_untranspose_unsplit_weights(dir_grads))
return dX, numpy.concatenate(grad_parts)
def _split_directions(X, dirs):
if dirs == 1:
return [X]
else:
X_ = X.reshape((X.shape[0], -1, dirs))
Xs = []
for d in range(dirs):
Xs.append(numpy.ascontiguousarray(X_[:, d]))
return Xs
cdef int _lstm_backward_training(
int d, int N, int nO, int nI, int nT,
float* dX,
float* dY,
float* dC,
float* dG,
float* dWx,
float* dWh,
float* d_bias,
const float* C,
const float* G,
const float* Y,
const float* X,
const float* Wx,
const float* Wh,
indices,
) except -1:
cdef int seq_t2
cdef int seq_t3
cdef double one = 1.0
if d == 0:
seq_t3, size_t3 = indices[-1]
indices = indices[:-1]
indices.reverse()
else:
seq_t3, size_t3 = indices[0]
indices = indices[1:]
cdef int batch_size
for seq_t2, size_t2 in indices:
dGt3 = &dG[seq_t3*nO*4]
dXt3 = &dX[seq_t3*nI]
dYt3 = &dY[seq_t3*nO]
dCt3 = &dC[seq_t3*nO]
dYt2 = &dY[seq_t2*nO]
dCt2 = &dC[seq_t2*nO]
Ct3 = &C[seq_t3*nO]
Gt3 = &G[seq_t3*nO*4]
Ct2 = &C[seq_t2*nO]
batch_size = min(size_t2, size_t3)
cpu_lstm_gates_bwd(dGt3, dCt2,
dYt3, dCt3, Gt3, Ct3, Ct2, batch_size * nO
)
# Backprop hidden-to-hidden w.r.t. hidden.
# dYt2 += dGt3 @ Wh
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
batch_size, nO, nO*4,
one,
<float*>dGt3, nO*4, 1,
<float*>Wh, nO, 1,
one,
dYt2, nO, 1
)
seq_t3 = seq_t2
size_t3 = size_t2
# Backprop input-to-hidden w.r.t. weights.
# dWx += dG @ X
blis.cy.gemm(blis.cy.TRANSPOSE, blis.cy.NO_TRANSPOSE,
nO*4, nI, N,
one,
<float*>dG, nO*4, 1,
<float*>X, nI, 1,
one,
dWx, nI, 1
)
# Backprop hidden-to-hidden w.r.t weights.
# dWh += dG @ Y
blis.cy.gemm(blis.cy.TRANSPOSE, blis.cy.NO_TRANSPOSE,
nO*4, nO, N,
one,
<float*>dG, nO*4, 1,
<float*>Y, nO, 1,
one,
dWh, nO, 1
)
# Backprop bias
for i in range(N):
for j in range(nO*4):
d_bias[j] += dG[i*nO*4+j]
# Backprop input-to-hidden w.r.t. input
blis.cy.gemm(blis.cy.NO_TRANSPOSE, blis.cy.NO_TRANSPOSE,
N, nI, nO*4,
one,
<float*>dG, nO*4, 1,
<float*>Wx, nI, 1,
one,
dX, nI, 1
)
def _split_weights(np.ndarray params, int i, int nO, int nI, int params_i):
Wx_size = 4 * nO * nI
bx_size = 4 * nO
Wh_size = 4 * nO * nO
bh_size = 4 * nO
Wx = params[params_i : params_i + Wx_size].reshape((4 * nO, nI))
params_i += Wx_size
bx = params[params_i : params_i + bx_size].reshape((4 * nO,))
params_i += bx_size
Wh = params[params_i : params_i + Wh_size].reshape((4 * nO, nO))
params_i += Wh_size
bh = params[params_i : params_i + bh_size].reshape((4 * nO,))
params_i += bh_size
return ((Wx, bx), (Wh, bh)), params_i
def _transpose_weights(params):
# Transpose the parameters so that the gates are the last dimension. This
# makes it easier to fuse.
(Wx, bx), (Wh, bh) = params
Wx = Wx.reshape((4, -1, Wx.shape[-1]))
Wx = Wx.transpose((1, 0, 2)).reshape((-1, Wx.shape[-1]))
bx = bx.reshape((4, -1)).transpose((1, 0)).reshape((-1,))
Wh = Wh.reshape((4, -1, Wh.shape[-1]))
Wh = Wh.transpose((1, 0, 2)).reshape((-1, Wh.shape[-1]))
bh = bh.reshape((4, -1)).transpose((1, 0)).reshape((-1,))
ascontig = numpy.ascontiguousarray
Wx = ascontig(Wx)
Wh = ascontig(Wh)
bias = ascontig(bx) + bh
return Wx, Wh, bias
def _untranspose_unsplit_weights(params):
Wx, Wh, bias = params
nO = Wh.shape[1]
nI = Wx.shape[1]
Wx = Wx.reshape((-1, 4, nI)).transpose((1, 0, 2)).reshape((-1, nI))
Wh = Wh.reshape((-1, 4, nO)).transpose((1, 0, 2)).reshape((-1, nO))
bias = bias.reshape((-1, 4)).transpose((1, 0)).reshape((-1,))
zeros = numpy.zeros(bias.shape, dtype="f")
return numpy.concatenate((Wx.ravel(), bias, Wh.ravel(), zeros))
cdef inline float sigmoid(float X) nogil:
return 1./(1. + expf(-X))
cdef inline float dsigmoid(float y) nogil:
return y*(1-y)
cdef inline float dtanh(float y) nogil:
return 1-y**2
cdef void cpu_lstm_activate_fwd(float* gates, int B, int N) nogil:
"""Apply sigmoid activation in-place to columns 0, 1, 2 and tanh to column 3.
The data is assumed to have the gates in the last dimension.
"""
# This just does the following, but unrolled slightly to give
# a better chance at simd.
#
# gates[g+i+0] = sigmoid(gates[g+i+0])
# gates[g+i+1] = sigmoid(gates[g+i+1])
# gates[g+i+2] = sigmoid(gates[g+i+2])
# gates[g+i+3] = tanh(gates[g+i+3])
#
# I would've hoped the compiler would find this itself? It seems to make
# it like, 10% faster. It feels like a dumb thing to do but it's not much
# code. The problem with this sort of thing is it needs to be rebenchmarked
# later...It's fine to revert this at a later date to the simpler loop.
# Shrug. The weird thing is, why should the batch entries be a good loop
# stride here? Surely something to do with cache lines would make more sense?
cdef int i, b, g
g = 0
for b in range(B):
g = b * N * 4
end = g + N*4
while g < end:
gates[g+0] = expf(-gates[g+0])
gates[g+1] = expf(-gates[g+1])
gates[g+2] = expf(-gates[g+2])
g += 4
g = b * N * 4
while g < end:
gates[g+0] += 1
gates[g+1] += 1
gates[g+2] += 1
g += 4
g = b * N * 4
while g < end:
gates[g+0] = 1.0 / gates[g+0]
gates[g+1] = 1.0 / gates[g+1]
gates[g+2] = 1.0 / gates[g+2]
g += 4
g = b * N * 4
while g < end:
gates[g+3] = tanhf(gates[g+3])
g += 4
cdef void cpu_lstm_gates_fwd(float* hiddens, float* cells,
const float* gates, const float* prevcells, int B, int N) nogil:
cdef float hf, hi, ho, hc, ct2, ct3
cdef int i, b, g, c, h
g = 0
c = 0
h = 0
while g < B*N*4:
hf = gates[g+0]
hi = gates[g+1]
ho = gates[g+2]
hc = gates[g+3]
ct2 = prevcells[c]
ct3 = hf * ct2 + hi * hc
hiddens[h] = tanhf(ct3) * ho
cells[c] = ct3
g += 4
c += 1
h += 1
cdef void cpu_lstm_gates_bwd(
float* dGt3,
float* dCt2,
const float* dYt3,
const float* dCt3,
const float* Gt3,
const float* Ct3,
const float* Ct2,
int N
) nogil:
cdef int i
cdef float ct2, ct3, hf, hi, ho, hc, tanh_ct3
cdef float d_ho, d_tanh_ct3, dct3, d_hi, d_hc, d_hf
for i in range(N):
ct2 = Ct2[i]
ct3 = Ct3[i]
dct3 = dCt3[i]
dyt3 = dYt3[i]
hf = Gt3[i*4+0]
hi = Gt3[i*4+1]
ho = Gt3[i*4+2]
hc = Gt3[i*4+3]
tanh_ct3 = tanhf(ct3)
# 3b: Yt3 = tanhCt3 * ho
d_ho = dyt3 * tanh_ct3
d_tanh_ct3 = dyt3 * ho
# 3a: tanhCt3 = tanh(Ct3)
dct3 += d_tanh_ct3 * dtanh(tanh_ct3)
# 2b: Ct3 += hi * hc
d_hi = dct3 * hc
d_hc = dct3 * hi
# 2a: Ct3 = hf * Ct2
d_hf = dct3 * ct2
dCt2[i] = dct3 * hf
dGt3[i*4+0] = d_hf * dsigmoid(hf) # 1a
dGt3[i*4+1] = d_hi * dsigmoid(hi) # 1b
dGt3[i*4+2] = d_ho * dsigmoid(ho) # 1c
dGt3[i*4+3] = d_hc * dtanh(hc) # 1d
cdef void MurmurHash3_x86_128_uint64(
const uint64_t val,
const uint32_t seed,
uint32_t *out
) nogil:
cdef uint64_t h1, h2
h1 = val
h1 *= 0x87c37b91114253d5ull
h1 = (h1 << 31) | (h1 >> 33)
h1 *= 0x4cf5ad432745937full
h1 ^= seed
h1 ^= 8
h2 = seed
h2 ^= 8
h1 += h2
h2 += h1
h1 ^= h1 >> 33
h1 *= 0xff51afd7ed558ccdull
h1 ^= h1 >> 33
h1 *= 0xc4ceb9fe1a85ec53ull
h1 ^= h1 >> 33
h2 ^= h2 >> 33
h2 *= 0xff51afd7ed558ccdull
h2 ^= h2 >> 33
h2 *= 0xc4ceb9fe1a85ec53ull
h2 ^= h2 >> 33
h1 += h2
h2 += h1
out[0] = h1 & 0xffffffffu
out[1] = h1 >> 32
out[2] = h2 & 0xffffffffu
out[3] = h2 >> 32
def _check_compatible_shape(u: np.ndarray, v: np.ndarray):
if u.shape != v.shape:
msg = f"arrays have incompatible shapes: {u.shape} and {v.shape}"
raise ValueError(msg)
cdef inline np.ndarray _inplace_or_copy(np.ndarray X, inplace):
if inplace:
return X
else:
return numpy.array(X)
|