1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
|
import math
from typing import Optional, List, Tuple, Sequence, Type, Union, cast, TypeVar
from typing import Iterator, overload, Any
import numpy
import itertools
from ..types import Xp, Shape, DTypes, DTypesInt, DTypesFloat, List2d, ArrayXd
from ..types import Floats1d, Floats2d, Floats3d, Floats4d
from ..types import Array1d, Array2d, Array3d, Array4d, ListXd
from ..types import FloatsXd, Ints1d, Ints2d, Ints3d, Ints4d, IntsXd, _Floats
from ..types import FloatsXdT
from ..types import DeviceTypes, Generator, Padded, Batchable, SizedGenerator
from ..util import get_array_module, is_xp_array, to_numpy
from .cblas import CBlas
ArrayT = TypeVar("ArrayT", bound=ArrayXd)
FloatsT = TypeVar("FloatsT", bound=_Floats)
SQRT2PI = math.sqrt(2.0 / math.pi)
INV_SQRT2 = 1.0 / math.sqrt(2.0)
INV_SQRT_2PI = 1.0 / math.sqrt(2.0 * math.pi)
class Ops:
name: str = "base"
xp: Xp = numpy
def __init__(
self, device_type: DeviceTypes = "cpu", device_id: int = -1, **kwargs
) -> None:
self.device_type = device_type
self.device_id = device_id
def cblas(self) -> CBlas:
"""Return C BLAS function table."""
err = f"{type(self).__name__} does not provide C BLAS functions"
raise NotImplementedError(err)
def to_numpy(self, data, *, byte_order=None): # pragma: no cover
if isinstance(data, numpy.ndarray):
if byte_order:
dtype = data.dtype.newbyteorder(byte_order)
data = numpy.asarray(data, dtype=dtype)
return data
else:
raise ValueError("Cannot convert non-numpy from base Ops class")
def minibatch(
self,
size: Union[int, Generator],
sequence: Batchable,
*,
shuffle: bool = False,
buffer: int = 1,
) -> SizedGenerator:
"""Iterate slices from a sequence, optionally shuffled. Slices
may be either views or copies of the underlying data.
The `size` argument may be either an integer, or a sequence of integers.
If a sequence, a new size is drawn before every output.
If shuffle is True, shuffled batches are produced by first generating
an index array, shuffling it, and then using it to slice into the
sequence.
An internal queue of `buffer` items is accumulated before being each
output. Buffering is useful for some devices, to allow the
network to run asynchronously without blocking on every batch.
"""
if not hasattr(sequence, "__len__"):
err = f"Can't minibatch data. Expected sequence, got {type(sequence)}"
raise ValueError(err)
sizes = self._get_batch_sizes(
len(sequence), itertools.repeat(size) if isinstance(size, int) else size
)
indices = numpy.arange(len(sequence))
# This is a bit convoluted, but it's a time where convenience makes
# trickery worthwhile: instead of being an actual generator, we
# return our SizedGenerator object, which provides a __len__.
def _iter_items():
if shuffle:
numpy.random.shuffle(indices)
queue = []
i = 0
for size in sizes:
size = int(size)
queue.append(self._get_batch(sequence, indices[i : i + size]))
if len(queue) >= buffer:
yield from queue
queue = []
i += size
yield from queue
return SizedGenerator(_iter_items, len(sizes))
def multibatch(
self,
size: Union[int, Generator],
sequence: Batchable,
*others: Batchable,
shuffle: bool = False,
buffer: int = 1,
) -> SizedGenerator:
"""Minibatch one or more sequences of data, and yield
lists with one batch per sequence. See ops.minibatch.
"""
# You'd think we could just do this by calling into minibatch and zip...
# But the shuffling makes it really hard.
sequences = (sequence,) + tuple(others)
if not all(hasattr(seq, "__len__") for seq in sequences):
values = ", ".join([f"{type(seq)}" for seq in sequences])
err = f"Can't multibatch data. Expected sequences, got {values}"
raise ValueError(err)
sizes = self._get_batch_sizes(
len(sequence), itertools.repeat(size) if isinstance(size, int) else size
)
indices = numpy.arange(len(sequence))
def _iter_items():
if shuffle:
numpy.random.shuffle(indices)
queue = []
i = 0
for size in sizes:
size = int(size)
idx_batch = indices[i : i + size]
queue.append([])
for sequence in sequences:
queue[-1].append(self._get_batch(sequence, idx_batch))
if len(queue) >= buffer:
yield from queue
queue = []
i += size
yield from queue
return SizedGenerator(_iter_items, len(sizes))
def _get_batch(self, sequence, indices):
if isinstance(sequence, list):
subseq = [sequence[i] for i in indices]
elif isinstance(sequence, tuple):
subseq = tuple(sequence[i] for i in indices)
else:
subseq = sequence[indices]
if is_xp_array(subseq):
subseq = self.as_contig(self.xp.asarray(subseq))
return subseq
def _get_batch_sizes(self, length: int, sizes: Iterator[int]):
output = []
i = 0
while i < length:
output.append(next(sizes))
i += output[-1]
return output
def seq2col(
self, seq: Floats2d, nW: int, *, lengths: Optional[Ints1d] = None
) -> Floats2d:
"""Given an (M, N) sequence of vectors, return an (M, N*(nW*2+1))
sequence. The new sequence is constructed by concatenating nW preceding
and succeeding vectors onto each column in the sequence, to extract a
window of features.
"""
# This is a test implementation that only supports nW=1 and lengths=None
assert nW == 1
assert lengths == None
B = seq.shape[0]
I = seq.shape[1]
cols = self.alloc3f(B, (nW * 2 + 1), I)
# Copy left contexts. The last words aren't the left-context for anything.
cols[nW:, :nW] = self.reshape3f(seq[:-nW], -1, nW, I)
cols[:, nW] = seq
cols[:-nW, nW + 1 :] = self.reshape3f(seq[nW:], -1, nW, I)
return self.reshape2f(cols, B, I * (2 * nW + 1))
def backprop_seq2col(
self, dY: Floats2d, nW: int, *, lengths: Optional[Ints1d] = None
) -> Floats2d:
"""The reverse/backward operation of the `seq2col` function: calculate
the gradient of the original `(M, N)` sequence, as a function of the
gradient of the output `(M, N*(nW*2+1))` sequence.
"""
# This is a test implementation that only supports nW=1 and lengths=None
assert nW == 1
assert lengths == None
nF = nW * 2 + 1
B = dY.shape[0]
I = dY.shape[1] // nF
# Having trouble getting the kernel to work...
dX = self.alloc2f(B, I)
dY3d = self.reshape3f(dY, B, nF, I)
dX[:-nW] += self.reshape2f(dY3d[nW:, :nW], -1, I)
dX += dY3d[:, nW]
dX[nW:] += self.reshape2f(dY3d[:-nW, nW + 1 :], -1, I)
return dX
def gemm(
self,
x: Floats2d,
y: Floats2d,
out: Optional[Floats2d] = None,
trans1: bool = False,
trans2: bool = False,
) -> Floats2d:
"""Perform General Matrix Multiplication (GeMM) and optionally store
the result in the specified output variable.
"""
if trans1:
x = x.T
if trans2:
y = y.T
if out is None:
return self.xp.dot(x, y)
else:
self.xp.dot(x, y, out=out)
return out
def tile(self, X: Floats2d, reps: int) -> Floats2d:
return self.xp.tile(X, reps)
def affine(self, X: Floats2d, W: Floats2d, b: Floats1d) -> Floats2d:
"""Apply a weights layer and a bias to some inputs, i.e.
Y = X @ W.T + b
"""
Y = self.gemm(X, W, trans2=True)
Y += b
return Y
@overload
def flatten(
self,
X: List[Floats2d],
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> Floats2d:
...
@overload
def flatten(
self,
X: List[Ints1d],
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> Ints1d:
...
@overload
def flatten(
self,
X: List2d,
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> Array2d:
...
# further specific typed signatures can be added as necessary
@overload
def flatten(
self,
X: ListXd,
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> ArrayXd:
...
@overload
def flatten(
self,
X: Sequence[ArrayXd],
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> ArrayXd:
...
def flatten(
self,
X: Sequence[ArrayXd],
dtype: Optional[DTypes] = None,
pad: int = 0,
ndim_if_empty: int = 2,
) -> ArrayXd:
"""Flatten a list of arrays into one large array."""
if X is None or len(X) == 0:
return self.alloc((0,) * ndim_if_empty, dtype=dtype or "f")
xp = get_array_module(X[0])
shape_if_empty = X[0].shape
X = [x for x in X if x.size != 0]
if len(X) == 0:
return self.alloc(shape_if_empty, dtype=dtype or "f")
if int(pad) >= 1:
padded = []
for x in X:
padded.append(xp.zeros((pad,) + x.shape[1:], dtype=x.dtype))
padded.append(x)
padded.append(xp.zeros((pad,) + x.shape[1:], dtype=x.dtype))
X = padded
result = xp.concatenate(X)
if dtype is not None:
result = xp.asarray(result, dtype=dtype)
return result
@overload
def unflatten(self, X: Floats2d, lengths: Ints1d, pad: int = 0) -> List[Floats2d]:
...
@overload
def unflatten(self, X: Ints1d, lengths: Ints1d, pad: int = 0) -> List[Ints1d]:
...
@overload
def unflatten(self, X: Array2d, lengths: Ints1d, pad: int = 0) -> List2d:
...
# further specific typed signatures can be added as necessary
@overload
def unflatten(self, X: ArrayXd, lengths: Ints1d, pad: int = 0) -> ListXd:
...
def unflatten(self, X: ArrayXd, lengths: Ints1d, pad: int = 0) -> ListXd:
"""The reverse/backward operation of the `flatten` function: unflatten
a large array into a list of arrays according to the given lengths.
"""
# cupy.split requires lengths to be in CPU memory.
lengths = to_numpy(lengths)
if pad > 0:
lengths = numpy.where(lengths > 0, lengths + pad, 0) # type: ignore
unflat = self.xp.split(X, numpy.cumsum(lengths))[:-1] # type: ignore
if pad > 0:
unflat = [a[pad:] for a in unflat]
assert len(unflat) == len(lengths)
return unflat
@overload
def pad(self, seqs: List[Ints2d], round_to=1) -> Ints3d:
...
@overload # noqa: F811
def pad(self, seqs: List[Floats2d], round_to=1) -> Floats3d:
...
def pad( # noqa: F811
self, seqs: Union[List[Ints2d], List[Floats2d]], round_to=1
) -> Array3d:
"""Perform padding on a list of arrays so that they each have the same
length, by taking the maximum dimension across each axis. This only
works on non-empty sequences with the same `ndim` and `dtype`.
"""
# TODO: This should be generalized to handle different ranks
if not seqs:
raise ValueError("Cannot pad empty sequence")
if len(set(seq.ndim for seq in seqs)) != 1:
raise ValueError("Cannot pad sequences with different ndims")
if len(set(seq.dtype for seq in seqs)) != 1:
raise ValueError("Cannot pad sequences with different dtypes")
if len(set(seq.shape[1:] for seq in seqs)) != 1:
raise ValueError("Cannot pad sequences that differ on other dimensions")
# Find the maximum dimension along each axis. That's what we'll pad to.
length = max(len(seq) for seq in seqs)
# Round the length to nearest bucket -- helps on GPU, to make similar
# array sizes.
length = (length + (round_to - 1)) // round_to * round_to
final_shape = (len(seqs), length) + seqs[0].shape[1:]
output: Array3d = cast(Array3d, self.alloc(final_shape, dtype=seqs[0].dtype))
for i, arr in enumerate(seqs):
# It's difficult to convince this that the dtypes will match.
output[i, : arr.shape[0]] = arr # type: ignore[assignment, call-overload]
return output
def unpad(self, padded: Array3d, lengths: List[int]) -> List2d:
"""The reverse/backward operation of the `pad` function: transform an
array back into a list of arrays, each with their original length.
"""
output = []
for i, length in enumerate(lengths):
output.append(padded[i, :length])
return cast(List2d, output)
def list2padded(self, seqs: List2d) -> Padded:
"""Pack a sequence of 2d arrays into a Padded datatype."""
if not seqs:
return Padded(
self.alloc3f(0, 0, 0), self.alloc1i(0), self.alloc1i(0), self.alloc1i(0)
)
elif len(seqs) == 1:
data = self.reshape3(seqs[0], seqs[0].shape[0], 1, seqs[0].shape[1])
size_at_t = self.asarray1i([1] * data.shape[0])
lengths = self.asarray1i([data.shape[0]])
indices = self.asarray1i([0])
return Padded(data, size_at_t, lengths, indices)
lengths_indices = [(len(seq), i) for i, seq in enumerate(seqs)]
lengths_indices.sort(reverse=True)
indices_ = [i for length, i in lengths_indices]
lengths_ = [length for length, i in lengths_indices]
nS = max([seq.shape[0] for seq in seqs])
nB = len(seqs)
nO = seqs[0].shape[1]
# Reorder the sequences, by length. This looks the same in either
# direction: you're swapping elements between their original and sorted
# position.
seqs = cast(List2d, [seqs[i] for i in indices_])
arr: Array3d = self.pad(seqs)
assert arr.shape == (nB, nS, nO), (nB, nS, nO)
arr = self.as_contig(arr.transpose((1, 0, 2)))
assert arr.shape == (nS, nB, nO)
# Build a lookup table so we can find how big the batch is at point t.
batch_size_at_t_ = [0 for _ in range(nS)]
current_size = len(lengths_)
for t in range(nS):
while current_size and t >= lengths_[current_size - 1]:
current_size -= 1
batch_size_at_t_[t] = current_size
assert sum(lengths_) == sum(batch_size_at_t_)
return Padded(
arr,
self.asarray1i(batch_size_at_t_),
self.asarray1i(lengths_),
self.asarray1i(indices_),
)
def padded2list(self, padded: Padded) -> List2d:
"""Unpack a Padded datatype to a list of 2-dimensional arrays."""
data = padded.data
indices = to_numpy(padded.indices)
lengths = to_numpy(padded.lengths)
unpadded: List[Optional[Array2d]] = [None] * len(lengths)
# Transpose from (length, batch, data) to (batch, length, data)
data = self.as_contig(data.transpose((1, 0, 2)))
for i in range(data.shape[0]):
unpadded[indices[i]] = data[i, : int(lengths[i])]
return cast(List2d, unpadded)
def get_dropout_mask(self, shape: Shape, drop: Optional[float]) -> FloatsXd:
"""Create a random mask for applying dropout, with a certain percent of
the mask (defined by `drop`) will contain zeros. The neurons at those
positions will be deactivated during training, resulting in a more
robust network and less overfitting.
"""
if drop is None or drop <= 0:
return self.xp.ones(shape, dtype="f")
elif drop >= 1.0:
return self.alloc_f(shape)
coinflips = self.xp.random.uniform(0.0, 1.0, shape)
mask = (coinflips >= drop) / (1.0 - drop)
return cast(FloatsXd, self.asarray(mask, dtype="float32"))
def alloc1f(
self,
d0: int,
*,
dtype: Optional[DTypesFloat] = "float32",
zeros: bool = True,
) -> Floats1d:
return cast(Floats1d, self.alloc((d0,), dtype=dtype, zeros=zeros))
def alloc2f(
self,
d0: int,
d1: int,
*,
dtype: Optional[DTypesFloat] = "float32",
zeros: bool = True,
) -> Floats2d:
return cast(Floats2d, self.alloc((d0, d1), dtype=dtype, zeros=zeros))
def alloc3f(
self,
d0: int,
d1: int,
d2: int,
*,
dtype: Optional[DTypesFloat] = "float32",
zeros: bool = True,
) -> Floats3d:
return cast(Floats3d, self.alloc((d0, d1, d2), dtype=dtype, zeros=zeros))
def alloc4f(
self,
d0: int,
d1: int,
d2: int,
d3: int,
*,
dtype: Optional[DTypesFloat] = "float32",
zeros: bool = True,
) -> Floats4d:
return cast(Floats4d, self.alloc((d0, d1, d2, d3), dtype=dtype, zeros=zeros))
def alloc_f(
self,
shape: Shape,
*,
dtype: Optional[DTypesFloat] = "float32",
zeros: bool = True,
) -> FloatsXd:
return cast(FloatsXd, self.alloc(shape, dtype=dtype, zeros=zeros))
def alloc1i(
self,
d0: int,
*,
dtype: Optional[DTypesInt] = "int32",
zeros: bool = True,
) -> Ints1d:
return cast(Ints1d, self.alloc((d0,), dtype=dtype, zeros=zeros))
def alloc2i(
self,
d0: int,
d1: int,
*,
dtype: Optional[DTypesInt] = "int32",
zeros: bool = True,
) -> Ints2d:
return cast(Ints2d, self.alloc((d0, d1), dtype=dtype, zeros=zeros))
def alloc3i(
self,
d0: int,
d1: int,
d2: int,
*,
dtype: Optional[DTypesInt] = "int32",
zeros: bool = True,
) -> Ints3d:
return cast(Ints3d, self.alloc((d0, d1, d2), dtype=dtype, zeros=zeros))
def alloc4i(
self,
d0: int,
d1: int,
d2: int,
d3: int,
*,
dtype: Optional[DTypesInt] = "int32",
zeros: bool = True,
) -> Ints4d:
return cast(Ints4d, self.alloc((d0, d1, d2, d3), dtype=dtype, zeros=zeros))
def alloc_i(
self,
shape: Shape,
*,
dtype: Optional[DTypesInt] = "int32",
zeros: bool = True,
) -> IntsXd:
return cast(IntsXd, self.alloc(shape, dtype=dtype, zeros=zeros))
def alloc(
self,
shape: Shape,
*,
dtype: Optional[DTypes] = "float32",
zeros: bool = True,
) -> Any:
"""Allocate an array of a certain shape."""
if isinstance(shape, int):
shape = (shape,)
if zeros:
return self.xp.zeros(shape, dtype=dtype)
else:
return self.xp.empty(shape, dtype=dtype)
def reshape1(self, array: ArrayXd, d0: int) -> Array1d:
return cast(Array1d, self.reshape(array, (d0,)))
def reshape2(self, array: ArrayXd, d0: int, d1: int) -> Array2d:
return cast(Array2d, self.reshape(array, (d0, d1)))
def reshape3(self, array: ArrayXd, d0: int, d1: int, d2: int) -> Array3d:
return cast(Array3d, self.reshape(array, (d0, d1, d2)))
def reshape4(self, array: ArrayXd, d0: int, d1: int, d2: int, d3: int) -> Array4d:
return cast(Array4d, self.reshape(array, (d0, d1, d2, d3)))
def reshape1f(self, array: FloatsXd, d0: int) -> Floats1d:
return cast(Floats1d, self.reshape(array, (d0,)))
def reshape2f(self, array: FloatsXd, d0: int, d1: int) -> Floats2d:
return cast(Floats2d, self.reshape(array, (d0, d1)))
def reshape3f(self, array: FloatsXd, d0: int, d1: int, d2: int) -> Floats3d:
return cast(Floats3d, self.reshape(array, (d0, d1, d2)))
def reshape4f(
self, array: FloatsXd, d0: int, d1: int, d2: int, d3: int
) -> Floats4d:
return cast(Floats4d, self.reshape(array, (d0, d1, d2, d3)))
def reshape_f(self, array: FloatsXd, shape: Shape) -> FloatsXd:
return self.reshape(array, shape)
def reshape1i(self, array: IntsXd, d0: int) -> Ints1d:
return cast(Ints1d, self.reshape(array, (d0,)))
def reshape2i(self, array: IntsXd, d0: int, d1: int) -> Ints2d:
return cast(Ints2d, self.reshape(array, (d0, d1)))
def reshape3i(self, array: IntsXd, d0: int, d1: int, d2: int) -> Ints3d:
return cast(Ints3d, self.reshape(array, (d0, d1, d2)))
def reshape4i(self, array: IntsXd, d0: int, d1: int, d2: int, d3: int) -> Ints4d:
return cast(Ints4d, self.reshape(array, (d0, d1, d2, d3)))
def reshape_i(self, array: IntsXd, shape: Shape) -> IntsXd:
return self.reshape(array, shape)
def reshape(self, array: ArrayT, shape: Shape) -> ArrayT:
"""Reshape an array."""
if isinstance(shape, int):
shape = (shape,)
return cast(ArrayT, array.reshape(shape))
def asarray4f(
self,
data: Union[Floats4d, Sequence[Sequence[Sequence[Sequence[float]]]]],
*,
dtype: Optional[DTypes] = "float32",
) -> Floats4d:
return cast(Floats4d, self.asarray(data, dtype=dtype))
def asarray3f(
self,
data: Union[Floats3d, Sequence[Sequence[Sequence[float]]]],
*,
dtype: Optional[DTypes] = "float32",
) -> Floats3d:
return cast(Floats3d, self.asarray(data, dtype=dtype))
def asarray2f(
self,
data: Union[Floats2d, Sequence[Sequence[float]]],
*,
dtype: Optional[DTypes] = "float32",
) -> Floats2d:
return cast(Floats2d, self.asarray(data, dtype=dtype))
def asarray1f(
self,
data: Union[Floats1d, Sequence[float]],
*,
dtype: Optional[DTypes] = "float32",
) -> Floats1d:
return cast(Floats1d, self.asarray(data, dtype=dtype))
def asarray_f(
self,
data: Union[FloatsXd, Sequence[Any]],
*,
dtype: Optional[DTypes] = "float32",
) -> FloatsXd:
return cast(FloatsXd, self.asarray(data, dtype=dtype))
def asarray1i(
self, data: Union[Ints1d, Sequence[int]], *, dtype: Optional[DTypes] = "int32"
) -> Ints1d:
return cast(Ints1d, self.asarray(data, dtype=dtype))
def asarray2i(
self,
data: Union[Ints2d, Sequence[Sequence[int]]],
*,
dtype: Optional[DTypes] = "int32",
) -> Ints2d:
return cast(Ints2d, self.asarray(data, dtype=dtype))
def asarray3i(
self,
data: Union[Ints3d, Sequence[Sequence[Sequence[int]]]],
*,
dtype: Optional[DTypes] = "int32",
) -> Ints3d:
return cast(Ints3d, self.asarray(data, dtype=dtype))
def asarray4i(
self,
data: Union[Ints4d, Sequence[Sequence[Sequence[Sequence[int]]]]],
*,
dtype: Optional[DTypes] = "int32",
) -> Ints4d:
return cast(Ints4d, self.asarray(data, dtype=dtype))
def asarray_i(
self, data: Union[IntsXd, Sequence[Any]], *, dtype: Optional[DTypes] = "int32"
) -> IntsXd:
return cast(IntsXd, self.asarray(data, dtype=dtype))
def asarray(
self,
data: Union[ArrayXd, Sequence[ArrayXd], Sequence[Any]],
*,
dtype: Optional[DTypes] = None,
) -> ArrayXd:
"""Ensure a given array is of the correct type."""
if isinstance(data, self.xp.ndarray):
if dtype is None:
return data
elif data.dtype == dtype:
return data
else:
return self.xp.asarray(data, dtype=dtype)
elif hasattr(data, "numpy"):
# Handles PyTorch Tensor
return data.numpy() # type: ignore[union-attr]
elif dtype is not None:
return self.xp.array(data, dtype=dtype)
else:
return self.xp.array(data)
def as_contig(self, data: ArrayT, dtype: Optional[DTypes] = None) -> ArrayT:
"""Allow the backend to make a contiguous copy of an array.
Implementations of `Ops` do not have to make a copy or make it
contiguous if that would not improve efficiency for the execution engine.
"""
if data.flags["C_CONTIGUOUS"] and dtype in (None, data.dtype):
return data
kwargs = {"dtype": dtype} if dtype is not None else {}
return self.xp.ascontiguousarray(data, **kwargs)
def sigmoid(self, X: FloatsXdT, *, inplace: bool = False) -> FloatsXdT:
if inplace:
# To prevent overflows and help with regularization/numerical stability
X = self.xp.clip(X, -20.0, 20.0, out=X)
self.xp.exp(-X, out=X)
X += 1.0
X **= -1.0
return X
else:
X = self.xp.clip(X, -20.0, 20.0)
return 1.0 / (1.0 + self.xp.exp(-X))
def backprop_sigmoid(
self, dY: FloatsXdT, Y: FloatsXdT, *, inplace: bool = False
) -> FloatsXdT:
if inplace:
self.dsigmoid(Y, inplace=True)
Y *= dY
return Y
else:
return dY * self.dsigmoid(Y, inplace=inplace)
def dsigmoid(self, Y: FloatsXdT, *, inplace: bool = False) -> FloatsXdT:
if inplace:
Y *= 1 - Y
return Y
else:
return Y * (1.0 - Y)
def dtanh(self, Y: FloatsT, *, inplace: bool = False) -> FloatsT:
if inplace:
Y **= 2
Y *= -1.0
Y += 1.0
return Y
else:
return 1 - Y**2
def softmax(
self,
x: FloatsT,
*,
inplace: bool = False,
axis: int = -1,
temperature: float = 1.0,
) -> FloatsT:
if temperature != 1.0:
x = x / temperature
maxes = self.xp.max(x, axis=axis, keepdims=True)
shifted = x - maxes
new_x = self.xp.exp(shifted)
new_x /= new_x.sum(axis=axis, keepdims=True)
return new_x
def softmax_sequences(
self, Xs: Floats2d, lengths: Ints1d, *, inplace: bool = False, axis: int = -1
) -> Floats2d:
if Xs.ndim >= 3:
err = f"Softmax currently only supports 2d. Got: {Xs.ndim}"
raise NotImplementedError(err)
# This loses almost no fidelity, and helps the numerical stability.
Xs = self.xp.clip(Xs, -20.0, 20.0)
new_x = self.xp.exp(Xs)
summed = self.backprop_reduce_sum(self.reduce_sum(new_x, lengths), lengths)
new_x /= summed
return new_x
def backprop_softmax(
self, Y: FloatsT, dY: FloatsT, *, axis: int = -1, temperature: float = 1.0
) -> FloatsT:
if temperature != 1.0:
dY = dY / temperature
dX = Y * dY
dX -= Y * dX.sum(axis=axis, keepdims=True)
return dX
def backprop_softmax_sequences(
self, dY: Floats2d, Y: Floats2d, lengths: Ints1d
) -> Floats2d:
dX = Y * dY
sum_dX = self.backprop_reduce_sum(self.reduce_sum(dX, lengths), lengths)
dX -= Y * sum_dX
return dX
def lstm_forward_training(
self,
params: Floats1d,
H0: Floats3d,
C0: Floats3d,
X: Floats2d,
size_at_t: Ints1d,
) -> Tuple[Floats2d, Tuple]:
assert H0.shape == C0.shape
assert H0.shape[1] == C0.shape[1]
Y, fwd_state = lstm_forward_training(params, H0, C0, X, size_at_t)
return Y, fwd_state
def lstm_forward_inference(
self,
params: Floats1d,
H0: Floats3d,
C0: Floats3d,
X: Floats2d,
size_at_t: Ints1d,
) -> Floats2d:
Y, _ = lstm_forward_training(params, H0, C0, X, size_at_t)
return Y
def backprop_lstm(
self, dY: Floats2d, lengths: Ints1d, params: Floats1d, fwd_state: Tuple
) -> Tuple[Floats2d, Floats1d]:
dX, d_params = backprop_lstm(dY, lengths, params, fwd_state)
return dX, d_params
def maxout(self, X: Floats3d) -> Tuple[Floats2d, Ints2d]:
which = X.argmax(axis=-1)
return X.max(axis=-1), which
def backprop_maxout(self, dY: Floats2d, which: Ints2d, P: int) -> Floats3d:
dX = self.alloc3f(dY.shape[0], dY.shape[1], P, dtype=dY.dtype)
for b in range(dY.shape[0]):
for o in range(dY.shape[1]):
dX[b, o, which[b, o]] = dY[b, o]
return dX
def relu(self, X: Floats2d, inplace: bool = False) -> Floats2d:
if not inplace:
return X * (X > 0)
else:
X *= X > 0
return X
def backprop_relu(
self, dY: Floats2d, Y: Floats2d, inplace: bool = False
) -> Floats2d:
if not inplace:
return dY * (Y > 0)
dY *= Y > 0
return dY
def clipped_linear(
self,
X: FloatsXdT,
slope: float = 1.0,
offset: float = 0.0,
min_val: float = 0.0,
max_val: float = 1.0,
inplace: bool = False,
) -> FloatsXdT:
if inplace:
X *= slope
X += offset
return self.xp.clip(X, min_val, max_val, out=X)
out = X * slope + offset
return self.xp.clip(out, min_val, max_val)
def backprop_clipped_linear(
self,
dY: FloatsXdT,
X: FloatsXdT,
slope: float = 1.0,
offset: float = 0.0,
min_val: float = 0.0,
max_val: float = 1.0,
inplace: bool = False,
) -> FloatsXdT:
low = (min_val - offset) / slope
high = (max_val - offset) / slope
slope = self.xp.float64(slope).astype(X.dtype)
zero = self.xp.float64(0.0).astype(X.dtype)
dX = self.xp.where((low < X) & (X < high), slope, zero)
if inplace:
dY *= dX
return dY
return dY * dX
def relu_k(self, X: FloatsXdT, n: float = 6.0, inplace: bool = False) -> FloatsXdT:
return self.clipped_linear(X, max_val=n, inplace=inplace)
def backprop_relu_k(
self, dY: FloatsXdT, X: FloatsXdT, n: float = 6.0, inplace: bool = False
) -> FloatsXdT:
return self.backprop_clipped_linear(dY, X, max_val=n, inplace=inplace)
def hard_sigmoid(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
return self.clipped_linear(X, slope=0.2, offset=0.5, inplace=inplace)
def backprop_hard_sigmoid(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
return self.backprop_clipped_linear(dY, X, slope=0.2, offset=0.5)
def hard_tanh(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
return self.clipped_linear(X, min_val=-1.0, max_val=1.0, inplace=inplace)
def backprop_hard_tanh(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
return self.backprop_clipped_linear(dY, X, min_val=-1.0, max_val=1.0)
def swish(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
if inplace:
X *= self.sigmoid(X)
return X
out = X * self.sigmoid(X)
return out
def backprop_swish(
self, dY: FloatsXdT, X: FloatsXdT, Y: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
Y = Y + self.sigmoid(X) * (1 - Y)
if inplace:
dY *= Y
return dY
out = dY * Y
return out
# Following https://www.scitepress.org/Papers/2019/74696/74696.pdf
def hard_swish(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
if inplace:
X *= self.hard_sigmoid(X)
return X
out = X * self.hard_sigmoid(X)
return out
def backprop_hard_swish(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
dX = X * 0.4 + 0.5
dX[X > 2.5] = 1.0
dX[X < -2.5] = 0
if inplace:
dY *= dX
return dY
return dY * dX
# From https://arxiv.org/pdf/1905.02244v5.pdf
def hard_swish_mobilenet(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
if inplace:
X *= self.relu_k(X + 3) / 6
return X
return X * (self.relu_k(X + 3) / 6)
def backprop_hard_swish_mobilenet(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
dX = (1 / 6) * (X * 2.0 + 3.0)
dX[X > 3.0] = 1.0
dX[X < -3.0] = 0
if inplace:
dY *= dX
return dY
return dX * dY
def dish(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
tmp = self.xp.square(X)
tmp += 1.0
self.xp.sqrt(tmp, out=tmp)
tmp = X / tmp
tmp += 1
tmp *= 0.5
if inplace:
X *= tmp
return X
else:
return X * tmp
def backprop_dish(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
x_sq = self.xp.square(X)
x_sq_plus_one = x_sq + 1.0
deriv = X / self.xp.sqrt(x_sq_plus_one)
second = 0.5 * X * x_sq
second /= x_sq_plus_one**1.5
deriv -= second
deriv += 0.5
if inplace:
dY *= deriv
return dY
else:
return dY * deriv
# Code snippet taken from:
# https://www.johndcook.com/blog/2009/01/19/stand-alone-error-function-erf/
def erf(self, X: FloatsXdT) -> FloatsXdT:
# save the sign of x
sign = self.xp.sign(X)
X = self.xp.abs(X)
a1 = 0.254829592
a2 = -0.284496736
a3 = 1.421413741
a4 = -1.453152027
a5 = 1.061405429
p = 0.3275911
t = 1.0 / (1.0 + p * X)
y = 1.0 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1) * t * self.xp.exp(
-X * X
)
out = sign * y
out = out.astype(X.dtype)
return out
def sechsq(self, X: FloatsXdT) -> FloatsXdT:
# Avoid overflow in cosh. Clipping at |20| has an error of 1.7e-17.
X = self.xp.clip(X, -20.0, 20.0)
return (1 / self.xp.cosh(X)) ** 2
def gelu_approx(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
tmp = 1.0 + self.xp.tanh(SQRT2PI * (X + 0.044715 * self.xp.power(X, 3)))
tmp *= 0.5
tmp = tmp.astype(X.dtype)
if inplace:
X *= tmp
return X
else:
Y = self.xp.array(X)
Y *= tmp
return Y
def backprop_gelu_approx(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
dX = cast(FloatsXdT, self.alloc_f(X.shape))
Xp3 = self.xp.power(X, 3)
tmp = 0.5 * self.xp.tanh(0.0356774 * Xp3 + 0.797885 * X)
tmp += (0.0535161 * Xp3 + 0.398942 * X) * self.sechsq(
0.0356774 * Xp3 + 0.797885 * X
)
tmp += 0.5
dX += tmp
if inplace:
dY *= dX
return dY
return dY * dX
def gelu(self, X: FloatsXdT, inplace: bool = False) -> FloatsXdT:
# GELU(x) = x · Φ(x)
cdf = gaussian_cdf(self, X)
if inplace:
X *= cdf
return X
return X * cdf
def backprop_gelu(
self, dY: FloatsXdT, X: FloatsXdT, inplace: bool = False
) -> FloatsXdT:
# GELU'(x) = Φ(x) + x · PDF(x)
dX = gaussian_cdf(self, X) + X * gaussian_pdf(self, X)
if inplace:
dY *= dX
return dY
return dY * dX
def mish(
self, X: FloatsXdT, threshold: float = 20.0, inplace: bool = False
) -> FloatsXdT:
tmp = X * self.xp.tanh(self.xp.log(1.0 + self.xp.exp(X)))
Y = self.xp.where(X >= threshold, X, tmp)
if inplace:
X[:] = Y
return X
else:
return Y
def backprop_mish(
self,
dY: FloatsXdT,
X: Floats2d,
threshold: float = 20.0,
inplace: bool = False,
) -> FloatsXdT:
if dY.shape != X.shape:
msg = f"arrays have incompatible shapes: {dY.shape} and {X.shape}"
raise ValueError(msg)
xp = get_array_module(X)
indices = X < threshold
Xsub = X[indices]
dYsub = dY[indices]
omega = 4.0 * (Xsub + 1.0)
omega += 4.0 * xp.exp(2.0 * Xsub)
omega += xp.exp(3.0 * Xsub)
omega += xp.exp(Xsub) * ((4.0 * Xsub) + 6.0)
delta = xp.exp(Xsub) + 1.0
delta *= delta
delta += 1.0
dXsub = dYsub * ((xp.exp(Xsub) * omega) / (delta**2))
# Gradient when above threshold will ignore softplus.
if inplace:
out = dY
else:
out = xp.copy(dY)
out[indices] = dXsub
return out
def update_averages(
self, ema: FloatsT, weights: FloatsT, t: int, max_decay: float = 0.9999
) -> None:
# Internals for optimizer
decay = (1.0 + t) / (10.0 + t)
if decay > max_decay:
decay = max_decay
ema -= (1 - decay) * (ema - weights)
def adam(
self,
weights: Floats1d,
gradient: Floats1d,
mom1: Floats1d,
mom2: Floats1d,
beta1: float,
beta2: float,
eps: float,
learn_rate: float,
mod_rate: float = 1.0,
) -> Tuple[Floats1d, Floats1d, Floats1d, Floats1d]:
_check_compatible_shape(weights, gradient)
_check_compatible_shape(weights, mom1)
_check_compatible_shape(weights, mom2)
# Internals for optimizer
mom1 *= beta1
mom2 *= beta2
mom1 += gradient * (1.0 - beta1)
mom2 += gradient * gradient * (1.0 - beta2)
# Here we assume learn rate is calculated by the caller.
# cdef weight_t a_t = learn_rate * sqrt(1-beta2**hp.t) / (1-beta1**hp.t);
weights -= learn_rate * (mom1 / (mod_rate * self.xp.sqrt(mom2) + eps))
return weights, gradient, mom1, mom2
def clip_gradient(self, gradient: FloatsT, threshold: float) -> FloatsT:
# Internals for optimizer
xp = get_array_module(gradient)
grad_norm = xp.linalg.norm(gradient)
if grad_norm >= threshold:
gradient *= threshold / grad_norm
return gradient
def logloss(self, y_true: FloatsT, y_pred: FloatsT) -> float:
# Currently not used
log_yp = self.xp.log(y_pred + 1e-8)
loss = (y_true * log_yp) + (1 - y_true) * self.xp.log((1 - y_pred) + 1e-8)
return -loss
def reduce_sum(self, X: Floats2d, lengths: Ints1d) -> Floats2d:
Y = self.alloc2f(lengths.shape[0], X.shape[1], zeros=False)
start = 0
for i, length in enumerate(lengths):
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
elif start + length > X.shape[0]:
raise IndexError("lengths must sum up to the number of rows")
elif length:
Y[i] = X[start : start + length].sum(axis=0)
start += length
else:
Y[i] = 0.0
return Y
def reduce_first(self, X: Floats2d, lengths: Ints1d) -> Tuple[Floats2d, Ints1d]:
if lengths.size == 0:
return self.alloc2f(0, X.shape[1]), lengths
if not self.xp.all(lengths > 0):
raise ValueError(f"all sequence lengths must be > 0")
starts_ends = self.alloc1i(lengths.shape[0] + 1, zeros=False)
starts_ends[0] = 0
starts_ends[1:] = lengths.cumsum()
if starts_ends[-1] != X.shape[0]:
raise IndexError("lengths must sum up to the number of rows")
return X[starts_ends[:-1]], starts_ends
def reduce_last(self, X: Floats2d, lengths: Ints1d) -> Tuple[Floats2d, Ints1d]:
if lengths.size == 0:
return self.alloc2f(0, X.shape[1]), lengths
if not self.xp.all(lengths > 0):
raise ValueError(f"all sequence lengths must be > 0")
lasts = lengths.cumsum() - 1
if lasts[-1] + 1 != X.shape[0]:
raise IndexError("lengths must sum up to the number of rows")
return X[lasts], lasts
def reduce_mean(self, X: Floats2d, lengths: Ints1d) -> Floats2d:
Y = self.alloc2f(lengths.shape[0], X.shape[1], zeros=False)
start = 0
for i, length in enumerate(lengths):
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
elif start + length > X.shape[0]:
raise IndexError("lengths must sum up to the number of rows")
elif length:
Y[i] = X[start : start + length].mean(axis=0)
else:
Y[i] = 0.0
start += length
return Y
def reduce_max(self, X: Floats2d, lengths: Ints1d) -> Tuple[Floats2d, Ints2d]:
Y = self.alloc2f(lengths.shape[0], X.shape[1], dtype=X.dtype, zeros=False)
which = self.alloc2i(lengths.shape[0], X.shape[1], zeros=False)
start = 0
for i, length in enumerate(lengths):
if length <= 0:
raise ValueError(f"all sequence lengths must be > 0, got {length}")
elif start + length > X.shape[0]:
raise IndexError("lengths must sum up to the number of rows")
elif length:
which[i] = X[start : start + length].argmax(axis=0)
Y[i] = X[start : start + length].max(axis=0)
start += length
return Y, which
def backprop_reduce_first(
self, d_firsts: Floats2d, starts_ends: Ints1d
) -> Floats2d:
if starts_ends.size < 2:
raise ValueError(f"starts_ends should least have size 2")
dX = self.alloc2f(
int(starts_ends[-1]), d_firsts.shape[1], dtype=d_firsts.dtype, zeros=True
)
dX[starts_ends[:-1]] = d_firsts
return dX
def backprop_reduce_last(self, d_lasts: Floats2d, lasts: Ints1d) -> Floats2d:
if lasts.size < 1:
raise ValueError(f"lasts should least have size 2")
dX = self.alloc2f(
int(lasts[-1]) + 1, d_lasts.shape[1], dtype=d_lasts.dtype, zeros=True
)
dX[lasts] = d_lasts
return dX
def backprop_reduce_sum(self, d_sums: Floats2d, lengths: Ints1d) -> Floats2d:
dX = self.alloc2f(
lengths.sum(), d_sums.shape[1], dtype=d_sums.dtype, zeros=False
)
start = 0
for i, length in enumerate(lengths):
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
dX[start : start + length] = d_sums[i]
start += length
return dX
def backprop_reduce_mean(self, d_means: Floats2d, lengths: Ints1d) -> Floats2d:
dX = self.alloc2f(
lengths.sum(), d_means.shape[1], dtype=d_means.dtype, zeros=False
)
start = 0
for i, length in enumerate(lengths):
if length < 0:
raise ValueError(f"all sequence lengths must be >= 0, got {length}")
dX[start : start + length] = d_means[i] / length
start += length
return dX
def backprop_reduce_max(
self, d_maxes: Floats2d, which: Ints2d, lengths: Ints1d
) -> Floats2d:
dX = self.alloc2f(lengths.sum(), d_maxes.shape[1], dtype=d_maxes.dtype)
start = 0
for i, length in enumerate(lengths):
if length <= 0:
raise ValueError(f"all sequence lengths must be > 0, got {length}")
self.xp.put_along_axis(
dX[start : start + length], which[i].reshape((1, -1)), d_maxes[i], 0
)
start += length
return dX
def hash(self, ids: Ints1d, seed: int) -> Ints2d:
"""Hash a sequence of 64-bit keys into a table with 4 32-bit keys, using
murmurhash3.
"""
from .numpy_ops import NumpyOps
numpy_ops = NumpyOps()
return self.asarray2i(
numpy_ops.hash(numpy_ops.asarray(ids, dtype="uint64"), seed)
)
def ngrams(self, n: int, keys: Ints1d) -> Ints1d:
from .numpy_ops import NumpyOps
numpy_ops = NumpyOps()
return self.asarray1i(
numpy_ops.ngrams(n, numpy_ops.asarray(keys, dtype="uint64"))
)
def position_encode(
self, N: int, D: int, period: int = 10000, out: Optional[Floats2d] = None
) -> Floats2d:
# Currently internals only
from .numpy_ops import NumpyOps
numpy_ops = NumpyOps()
return self.asarray2f(numpy_ops.position_encode(N, D, period, out))
def gather_add(self, table: Floats2d, indices: Ints2d) -> Floats2d:
return table[indices].sum(axis=1) # type: ignore[return-value]
def scatter_add(
self, table: FloatsXd, indices: IntsXd, values: FloatsXd
) -> FloatsXd:
return self.xp.add.at(table, indices, values)
def insert_into(self, shape, Xs):
"""Maybe don't need this? Just a quicky to get Jax working."""
output = self.alloc(shape, dtype=Xs[0].dtype)
for i, x in enumerate(Xs):
output[i, : x.shape[0]] = x
return output
"""
LSTM Notation (kind of involved, but made it a lot easier to write)
X: Inputs
Y: Outputs (aka hiddens)
C: Cells
G: Gates (Output of non-linearity, i.e. lstm_gates(X @ W.T)
A: Activations (X @ W.T, before non-linearity)
Imagine we have the input:
batch = [
["apple", "banana", "cantaloupe", "date", "elderberry"],
["aardvark", "bat", "capybara", "dingo", "elephant"]
]
The input variable X will have one vector per word, so X[0, 1] will be banana's
vector, X[0, 1, 0] will be a float, the first element of that vector.
We're computing an output variable Y of shape (nL, nB, nO), so that Y[0, 1] is
the output variable of banana.
A problem with variables for RNNs is keeping the timesteps straight. It's hard
to distinguish the current, previous, and next timesteps. To solve this problem,
we follow the convention that **we are at timestep 3**.
Additionally, the variables for Y and C are offset by one, as the 0th elements
have the initial hiddens and initial cells. So:
t=3
Xt3: The input vectors for 'dingo' and 'date', i.e. X[t]
Yt3: The output vectors for 'dingo' and 'date', i.e. Y[t+1] (Y is offset.)
Ct2: The cells calculated at 'c...', that are the input for 'd...'
Ct3: The cells calculated at 'd...', that are the input for 'e...'
At3: The activations at 'd...'
Gt3: The gates at 'd...'
"""
def lstm_forward_training(
params: Floats1d, c_init: Floats3d, h_init: Floats3d, X: Floats2d, lengths: Ints1d
) -> Tuple[Floats2d, Tuple]:
xp = get_array_module(params)
depth, dirs, nO = c_init.shape
N, nI = X.shape
batch_size = lengths[0]
# Preallocate these so we can pass them through for loop.
G = cast(Floats4d, xp.zeros((depth, dirs, X.shape[0], nO * 4), dtype="f"))
Y = cast(Floats4d, xp.zeros((depth, dirs, X.shape[0], nO), dtype="f"))
C = cast(Floats4d, xp.zeros((depth, dirs, X.shape[0], nO), dtype="f"))
Yt2 = cast(Floats2d, xp.zeros((batch_size, nO), dtype="f"))
Ct2 = cast(Floats2d, xp.zeros((batch_size, nO), dtype="f"))
# Compute the start and end indices first.
indices = []
start = 0
for batch_size in lengths:
indices.append((start, start + batch_size))
start += batch_size
params_i = 0
orig_X = X
for i in range(depth):
nI = X.shape[1]
for d in range(dirs):
# The inits are shaped (depth, dirs, nO). We add the internal dimension
# to make them set correctly.
Yt2 = h_init[i, d].reshape((1, nO)) # type: ignore[assignment]
Ct2 = c_init[i, d].reshape((1, nO)) # type: ignore[assignment]
layer_params, params_i = _split_weights(params, i, nO, nI, params_i)
Wx, Wh, bias = _transpose_weights(layer_params)
G[i, d] += xp.dot(X, Wx.T)
G[i, d] += bias
for start, end in indices if d == 0 else reversed(indices):
# When we iterate left-to-right, t2 might be longer than t3.
Yt2 = Yt2[: end - start]
Ct2 = Ct2[: end - start]
# But in right-to-left, it's the opposite: t3 can be longer.
Gt3 = G[i, d, start:end]
Gt3 = Gt3[: Yt2.shape[0]]
Gt3 += xp.dot(Yt2, Wh.T)
Gt3_ = cast(Floats3d, Gt3.reshape((-1, nO, 4)))
hf = sigmoid(Gt3_[:, :, 0])
hi = sigmoid(Gt3_[:, :, 1])
ho = sigmoid(Gt3_[:, :, 2])
hc = xp.tanh(Gt3_[:, :, 3])
Ct3 = hf * Ct2
Ct3 += hi * hc
# Store results
Gt3 = (
xp.hstack((hf, hi, ho, hc))
.reshape((-1, 4, nO))
.transpose((0, 2, 1))
.reshape((-1, nO * 4))
)
# Fix the endpoint to account for shorter slices when iterating
# reversed. Not 100% sure this is right. If there's a bug, look
# here?
end = min(end, start + ho.shape[0])
Y[i, d, start:end] = xp.tanh(Ct3) * ho
G[i, d, start:end] = Gt3
C[i, d, start:end] = Ct3
# Set the t2 variables to the current t3 variables.
Ct2 = Ct3
Yt2 = Y[i, d, start:end]
H = cast(Floats2d, Y[i].transpose((1, 0, 2)).reshape((N, -1)))
if dirs == 2:
H = xp.ascontiguousarray(H)
X = H
return H, (Y, G, C, orig_X)
def backprop_lstm(dY: Floats2d, lengths: Ints1d, params: Floats1d, fwd_state: Tuple):
xp = get_array_module(params)
Y: Floats4d
G: Floats4d
C: Floats4d
X: Floats2d
Wx: Floats2d
Wh: Floats2d
bias: Floats1d
dWx: Floats2d
dWh: Floats2d
d_bias: Floats1d
Y, G, C, X = fwd_state
depth, dirs, N, nO = C.shape
nI = X.shape[1]
batch_size = lengths[0]
# We don't need to store all the cells for all the layers.
dC = cast(Floats2d, xp.zeros((N, nO), dtype=C.dtype))
dG = cast(Floats2d, xp.zeros((N, nO * 4), dtype=C.dtype))
d_params = cast(Floats1d, xp.zeros((params.shape[0],), dtype=params.dtype))
# Collect the params and slices. It makes it a bit easier to get the indexing
# right, when we're iterating backwards.
params_i = 0
all_layer_params: List[List[Tuple[Tuple[Floats2d, Floats2d, Floats1d], int]]] = []
for i in range(depth):
all_layer_params.append([])
n_inputs = nI if i == 0 else (nO * dirs)
for d in range(dirs):
layer_params, params_i = _split_weights(params, i, nO, n_inputs, params_i)
layer_params = _transpose_weights(layer_params)
all_layer_params[-1].append((layer_params, params_i))
params_i = 0
all_layer_grads: List[List[Tuple[Tuple[Floats2d, Floats2d, Floats1d], int]]] = []
for i in range(depth):
all_layer_grads.append([])
n_inputs = nI if i == 0 else (nO * dirs)
for d in range(dirs):
layer_grads, params_i = _split_weights(d_params, i, nO, n_inputs, params_i)
layer_grads = _transpose_weights(layer_grads)
all_layer_grads[-1].append((layer_grads, params_i))
# Similarly, we want to compute the indices first
indices = []
start = 0
for batch_size in lengths:
indices.append((start, start + batch_size))
start += batch_size
Xs = [X] + [
cast(Floats2d, Y[i].transpose((1, 0, 2)).reshape((N, -1)))
for i in range(depth - 1)
]
dXs = [xp.zeros((X.shape[0], X.shape[1]), dtype=X.dtype) for X in Xs]
# Okay, now do the actual looping
for i in reversed(range(depth)):
dY3d = cast(Floats3d, dY.reshape((N, dirs, nO)).transpose((1, 0, 2)))
dX = dXs[i]
X = Xs[i]
if dirs >= 2:
dY3d = xp.ascontiguousarray(dY3d)
for d in range(dirs):
Wx, Wh, bias = all_layer_params[i][d][0]
dWx, dWh, d_bias = all_layer_grads[i][d][0]
if d == 0:
start_t3, end_t3 = indices[-1]
layer_indices = indices[:-1]
layer_indices.reverse()
else:
start_t3, end_t3 = indices[0]
layer_indices = indices[1:]
for start_t2, end_t2 in layer_indices:
size = min(end_t2 - start_t2, end_t3 - start_t3)
dGt3, dCt2 = backprop_lstm_gates(
dY3d[d, start_t3 : start_t3 + size],
dC[start_t3 : start_t3 + size],
G[i, d, start_t3 : start_t3 + size],
C[i, d, start_t3 : start_t3 + size],
C[i, d, start_t2 : start_t2 + size],
)
# Backprop hidden-to-hidden w.r.t. hidden.
dY3d[d, start_t2 : start_t2 + size] += dGt3 @ Wh
# Update iteration variables
dC[start_t2 : start_t2 + size] = dCt2
start_t3 = start_t2
end_t3 = end_t2
# Backprop input-to-hidden w.r.t. weights.
dWx += dG.T @ X
# Backprop hidden-to-hidden w.r.t. weights.
dWh += dG.T @ Y[i, d]
# Backprop bias
d_bias += dG.sum(axis=0)
# Backprop input-to-hidden w.r.t. input
dX += dG @ Wx
dY = dX
assert dX.shape[1] == X.shape[1]
grad_parts = []
for layer_grads in all_layer_grads:
for dir_grads, _ in layer_grads:
grad_parts.append(_untranspose_unsplit_weights(dir_grads))
return dX, xp.concatenate(grad_parts)
def _split_weights(params: Floats1d, i: int, nO: int, nI: int, params_i: int):
Wx_size = 4 * nO * nI
bx_size = 4 * nO
Wh_size = 4 * nO * nO
bh_size = 4 * nO
Wx = params[params_i : params_i + Wx_size].reshape((4 * nO, nI))
params_i += Wx_size
bx = params[params_i : params_i + bx_size].reshape((4 * nO,))
params_i += bx_size
Wh = params[params_i : params_i + Wh_size].reshape((4 * nO, nO))
params_i += Wh_size
bh = params[params_i : params_i + bh_size].reshape((4 * nO,))
params_i += bh_size
return ((Wx, bx), (Wh, bh)), params_i
def _transpose_weights(params):
# Transpose the parameters so that the gates are the last dimension. This
# makes it easier to fuse.
(Wx, bx), (Wh, bh) = params
xp = get_array_module(Wx)
Wx = Wx.reshape((4, -1, Wx.shape[-1]))
Wx = Wx.transpose((1, 0, 2)).reshape((-1, Wx.shape[-1]))
bx = bx.reshape((4, -1)).transpose((1, 0)).reshape((-1,))
Wh = Wh.reshape((4, -1, Wh.shape[-1]))
Wh = Wh.transpose((1, 0, 2)).reshape((-1, Wh.shape[-1]))
bh = bh.reshape((4, -1)).transpose((1, 0)).reshape((-1,))
ascontig = xp.ascontiguousarray
Wx = ascontig(Wx)
Wh = ascontig(Wh)
bias = ascontig(bx) + bh
return Wx, Wh, bias
def _untranspose_unsplit_weights(params):
Wx, Wh, bias = params
xp = get_array_module(Wx)
nO = Wh.shape[1]
nI = Wx.shape[1]
Wx = Wx.reshape((-1, 4, nI)).transpose((1, 0, 2)).reshape((-1, nI))
Wh = Wh.reshape((-1, 4, nO)).transpose((1, 0, 2)).reshape((-1, nO))
bias = bias.reshape((-1, 4)).transpose((1, 0)).reshape((-1,))
zeros = xp.zeros(bias.shape, dtype="f")
return xp.concatenate((Wx.ravel(), bias, Wh.ravel(), zeros))
def backprop_lstm_gates(
dYt3: Floats2d, dCt3: Floats2d, Gt3: Floats2d, Ct3: Floats2d, Ct2: Floats2d
) -> Tuple[Floats2d, Floats2d]:
# See above for notation. Step numbering refers to forward_lstm_gates
xp = get_array_module(dYt3)
hf, hi, ho, hc = xp.split(Gt3, 4, axis=-1)
assert hf.shape[0] == hi.shape[0] == ho.shape[0] == hc.shape[0]
assert hf.shape[0] == dYt3.shape[0] == dCt3.shape[0] == Ct3.shape[0] == Ct2.shape[0]
tanhCt3 = xp.tanh(Ct3)
# 3b: Yt3 = tanhCt3 * ho
d_ho = dYt3 * tanhCt3
d_tanhCt3 = dYt3 * ho
# 3a: tanhCt3 = tanh(Ct3)
dCt3 += d_tanhCt3 * dtanh(tanhCt3)
# 2b: Ct3 += hi * hc
d_hi = dCt3 * hc
d_hc = dCt3 * hi
# 2a: Ct3 = hf * Ct2
d_hf = dCt3 * Ct2
dCt2 = dCt3 * hf
d_At3_hc = d_hc * dtanh(hc) # 1d
d_At3_ho = d_ho * dsigmoid(ho) # 1c
d_At3_hi = d_hi * dsigmoid(hi) # 1b
d_At3_hf = d_hf * dsigmoid(hf) # 1a
dAt3 = xp.concatenate((d_At3_hf, d_At3_hi, d_At3_ho, d_At3_hc), axis=-1)
return dAt3, dCt2
def sigmoid(X, out=None):
xp = get_array_module(X)
# To prevent overflows and help with regularization/numerical stability
X = xp.clip(X, -20.0, 20.0)
return 1.0 / (1.0 + xp.exp(-X))
def dsigmoid(Y: ArrayT) -> ArrayT:
return Y * (1.0 - Y)
def dtanh(Y: ArrayT) -> ArrayT:
return 1 - Y**2
def gaussian_cdf(ops: Ops, X: FloatsXdT) -> FloatsXdT:
"""Gaussian CDF for distribution with mean 0 and stdev 1."""
return 0.5 * (1.0 + ops.erf(INV_SQRT2 * X))
def gaussian_pdf(ops: Ops, X: FloatsXdT) -> FloatsXdT:
"""Gaussian PDF for distribution with mean 0 and stdev 1."""
return INV_SQRT_2PI * ops.xp.exp(-0.5 * X * X)
def _check_compatible_shape(u: FloatsXd, v: FloatsXd):
if u.shape != v.shape:
msg = f"arrays have incompatible shapes: {u.shape} and {v.shape}"
raise ValueError(msg)
|