1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
# cython: profile=True, experimental_cpp_class_def=True, cdivision=True, infer_types=True
cimport cython
from libc.string cimport memset, memcpy
from libc.math cimport log, exp
import math
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
cdef class Beam:
def __init__(self, class_t nr_class, class_t width, weight_t min_density=0.0):
assert nr_class != 0
assert width != 0
self.nr_class = nr_class
self.width = width
self.min_density = min_density
self.size = 1
self.t = 0
self.mem = Pool()
self._parents = <_State*>self.mem.alloc(self.width, sizeof(_State))
self._states = <_State*>self.mem.alloc(self.width, sizeof(_State))
cdef int i
self.histories = [[] for i in range(self.width)]
self._parent_histories = [[] for i in range(self.width)]
self.scores = <weight_t**>self.mem.alloc(self.width, sizeof(weight_t*))
self.is_valid = <int**>self.mem.alloc(self.width, sizeof(weight_t*))
self.costs = <weight_t**>self.mem.alloc(self.width, sizeof(weight_t*))
for i in range(self.width):
self.scores[i] = <weight_t*>self.mem.alloc(self.nr_class, sizeof(weight_t))
self.is_valid[i] = <int*>self.mem.alloc(self.nr_class, sizeof(int))
self.costs[i] = <weight_t*>self.mem.alloc(self.nr_class, sizeof(weight_t))
def __len__(self):
return self.size
property score:
def __get__(self):
return self._states[0].score
property min_score:
def __get__(self):
return self._states[self.size-1].score
property loss:
def __get__(self):
return self._states[0].loss
property probs:
def __get__(self):
return _softmax([self._states[i].score for i in range(self.size)])
property scores:
def __get__(self):
return [self._states[i].score for i in range(self.size)]
property histories:
def __get__(self):
return self.histories
cdef int set_row(self, int i, const weight_t* scores, const int* is_valid,
const weight_t* costs) except -1:
cdef int j
for j in range(self.nr_class):
self.scores[i][j] = scores[j]
self.is_valid[i][j] = is_valid[j]
self.costs[i][j] = costs[j]
cdef int set_table(self, weight_t** scores, int** is_valid, weight_t** costs) except -1:
cdef int i, j
for i in range(self.width):
memcpy(self.scores[i], scores[i], sizeof(weight_t) * self.nr_class)
memcpy(self.is_valid[i], is_valid[i], sizeof(bint) * self.nr_class)
memcpy(self.costs[i], costs[i], sizeof(int) * self.nr_class)
cdef int initialize(self, init_func_t init_func, del_func_t del_func, int n, void* extra_args) except -1:
for i in range(self.width):
self._states[i].content = init_func(self.mem, n, extra_args)
self._parents[i].content = init_func(self.mem, n, extra_args)
self.del_func = del_func
def __dealloc__(self):
for i in range(self.width):
self.del_func(self.mem, self._states[i].content, NULL)
self.del_func(self.mem, self._parents[i].content, NULL)
@cython.cdivision(True)
cdef int advance(self, trans_func_t transition_func, hash_func_t hash_func,
void* extra_args) except -1:
cdef weight_t** scores = self.scores
cdef int** is_valid = self.is_valid
cdef weight_t** costs = self.costs
cdef Queue* q = new Queue()
self._fill(q, scores, is_valid)
# For a beam of width k, we only ever need 2k state objects. How?
# Each transition takes a parent and a class and produces a new state.
# So, we don't need the whole history --- just the parent. So at
# each step, we take a parent, and apply one or more extensions to
# it.
self._parents, self._states = self._states, self._parents
self._parent_histories, self.histories = self.histories, self._parent_histories
cdef weight_t score
cdef int p_i
cdef int i = 0
cdef class_t clas
cdef _State* parent
cdef _State* state
cdef hash_t key
cdef PreshMap seen_states = PreshMap(self.width)
cdef uint64_t is_seen
cdef uint64_t one = 1
while i < self.width and not q.empty():
data = q.top()
p_i = data.second / self.nr_class
clas = data.second % self.nr_class
score = data.first
q.pop()
parent = &self._parents[p_i]
# Indicates terminal state reached; i.e. state is done
if parent.is_done:
# Now parent will not be changed, so we don't have to copy.
# Once finished, should also be unbranching.
self._states[i], parent[0] = parent[0], self._states[i]
parent.i = self._states[i].i
parent.t = self._states[i].t
parent.is_done = self._states[i].t
self._states[i].score = score
self.histories[i] = list(self._parent_histories[p_i])
i += 1
else:
state = &self._states[i]
# The supplied transition function should adjust the destination
# state to be the result of applying the class to the source state
transition_func(state.content, parent.content, clas, extra_args)
key = hash_func(state.content, extra_args) if hash_func is not NULL else 0
is_seen = <uint64_t>seen_states.get(key)
if key == 0 or key == 1 or not is_seen:
if key != 0 and key != 1:
seen_states.set(key, <void*>one)
state.score = score
state.loss = parent.loss + costs[p_i][clas]
self.histories[i] = list(self._parent_histories[p_i])
self.histories[i].append(clas)
i += 1
del q
self.size = i
assert self.size >= 1
for i in range(self.width):
memset(self.scores[i], 0, sizeof(weight_t) * self.nr_class)
memset(self.costs[i], 0, sizeof(weight_t) * self.nr_class)
memset(self.is_valid[i], 0, sizeof(int) * self.nr_class)
self.t += 1
cdef int check_done(self, finish_func_t finish_func, void* extra_args) except -1:
cdef int i
for i in range(self.size):
if not self._states[i].is_done:
self._states[i].is_done = finish_func(self._states[i].content, extra_args)
for i in range(self.size):
if not self._states[i].is_done:
self.is_done = False
break
else:
self.is_done = True
@cython.cdivision(True)
cdef int _fill(self, Queue* q, weight_t** scores, int** is_valid) except -1:
"""Populate the queue from a k * n matrix of scores, where k is the
beam-width, and n is the number of classes.
"""
cdef Entry entry
cdef weight_t score
cdef _State* s
cdef int i, j, move_id
assert self.size >= 1
cdef vector[Entry] entries
for i in range(self.size):
s = &self._states[i]
move_id = i * self.nr_class
if s.is_done:
# Update score by path average, following TACL '13 paper.
if self.histories[i]:
entry.first = s.score + (s.score / self.t)
else:
entry.first = s.score
entry.second = move_id
entries.push_back(entry)
else:
for j in range(self.nr_class):
if is_valid[i][j]:
entry.first = s.score + scores[i][j]
entry.second = move_id + j
entries.push_back(entry)
cdef double max_, Z, cutoff
if self.min_density == 0.0:
for i in range(entries.size()):
q.push(entries[i])
elif not entries.empty():
max_ = entries[0].first
Z = 0.
cutoff = 0.
# Softmax into probabilities, so we can prune
for i in range(entries.size()):
if entries[i].first > max_:
max_ = entries[i].first
for i in range(entries.size()):
Z += exp(entries[i].first-max_)
cutoff = (1. / Z) * self.min_density
for i in range(entries.size()):
prob = exp(entries[i].first-max_) / Z
if prob >= cutoff:
q.push(entries[i])
cdef class MaxViolation:
def __init__(self):
self.p_score = 0.0
self.g_score = 0.0
self.Z = 0.0
self.gZ = 0.0
self.delta = -1
self.cost = 0
self.p_hist = []
self.g_hist = []
self.p_probs = []
self.g_probs = []
cpdef int check(self, Beam pred, Beam gold) except -1:
cdef _State* p = &pred._states[0]
cdef _State* g = &gold._states[0]
cdef weight_t d = p.score - g.score
if p.loss >= 1 and (self.cost == 0 or d > self.delta):
self.cost = p.loss
self.delta = d
self.p_hist = list(pred.histories[0])
self.g_hist = list(gold.histories[0])
self.p_score = p.score
self.g_score = g.score
self.Z = 1e-10
self.gZ = 1e-10
for i in range(pred.size):
if pred._states[i].loss > 0:
self.Z += exp(pred._states[i].score)
for i in range(gold.size):
if gold._states[i].loss == 0:
prob = exp(gold._states[i].score)
self.Z += prob
self.gZ += prob
cpdef int check_crf(self, Beam pred, Beam gold) except -1:
d = pred.score - gold.score
seen_golds = set([tuple(gold.histories[i]) for i in range(gold.size)])
if pred.loss > 0 and (self.cost == 0 or d > self.delta):
p_hist = []
p_scores = []
g_hist = []
g_scores = []
for i in range(pred.size):
if pred._states[i].loss > 0:
p_scores.append(pred._states[i].score)
p_hist.append(list(pred.histories[i]))
# This can happen from non-monotonic actions
# If we find a better gold analysis this way, be sure to keep it.
elif pred._states[i].loss <= 0 \
and tuple(pred.histories[i]) not in seen_golds:
g_scores.append(pred._states[i].score)
g_hist.append(list(pred.histories[i]))
for i in range(gold.size):
if gold._states[i].loss == 0:
g_scores.append(gold._states[i].score)
g_hist.append(list(gold.histories[i]))
all_probs = _softmax(p_scores + g_scores)
p_probs = all_probs[:len(p_scores)]
g_probs_all = all_probs[len(p_scores):]
g_probs = _softmax(g_scores)
self.cost = pred.loss
self.delta = d
self.p_hist = p_hist
self.g_hist = g_hist
# TODO: These variables are misnamed! These are the gradients of the loss.
self.p_probs = p_probs
# Intuition here:
# The gradient of the loss is:
# P(model) - P(truth)
# Normally, P(truth) is 1 for the gold
# But, if we want to do the "partial credit" scheme, we want
# to create a distribution over the gold, proportional to the scores
# awarded.
self.g_probs = [x-y for x, y in zip(g_probs_all, g_probs)]
def _softmax(nums):
if not nums:
return []
max_ = max(nums)
nums = [(exp(n-max_) if n is not None else None) for n in nums]
Z = sum(n for n in nums if n is not None)
return [(n/Z if n is not None else None) for n in nums]
|