1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
import pytest
import numpy
import numpy.testing
from thinc.api import NumpyOps, Model, Linear, noop
from thinc.api import with_array2d, with_array, with_padded, with_list
from thinc.api import with_ragged, with_getitem
from thinc.types import Padded, Ragged
from ..util import get_data_checker
@pytest.fixture(params=[[], [(10, 2)], [(5, 3), (1, 3)], [(2, 3), (0, 3), (1, 3)]])
def shapes(request):
return request.param
@pytest.fixture
def ops():
return NumpyOps()
@pytest.fixture
def list_input(shapes):
data = [numpy.zeros(shape, dtype="f") for shape in shapes]
for i, x in enumerate(data):
# Give values that make it easy to see where rows or columns mismatch.
x += i * 100
x += numpy.arange(x.shape[0]).reshape((-1, 1)) * 10
x += numpy.arange(x.shape[1]).reshape((1, -1))
return data
@pytest.fixture
def ragged_input(ops, list_input):
lengths = numpy.array([len(x) for x in list_input], dtype="i")
if not list_input:
return Ragged(ops.alloc2f(0, 0), lengths)
else:
return Ragged(ops.flatten(list_input), lengths)
@pytest.fixture
def padded_input(ops, list_input):
return ops.list2padded(list_input)
@pytest.fixture
def array_input(ragged_input):
return ragged_input.data
@pytest.fixture
def padded_data_input(padded_input):
x = padded_input
return (x.data, x.size_at_t, x.lengths, x.indices)
@pytest.fixture
def ragged_data_input(ragged_input):
return (ragged_input.data, ragged_input.lengths)
@pytest.fixture
def noop_models():
return [
with_padded(noop()),
with_array(noop()),
with_array2d(noop()),
with_list(noop()),
with_ragged(noop()),
]
# As an example operation, lets just trim the last dimension. That
# should catch stuff that confuses the input and output.
def get_array_model():
def _trim_array_forward(model, X, is_train):
def backprop(dY):
return model.ops.alloc2f(dY.shape[0], dY.shape[1] + 1)
return X[:, :-1], backprop
return with_array2d(Model("trimarray", _trim_array_forward))
def get_list_model():
def _trim_list_forward(model, Xs, is_train):
def backprop(dYs):
dXs = []
for dY in dYs:
dXs.append(model.ops.alloc2f(dY.shape[0], dY.shape[1] + 1))
return dXs
Ys = [X[:, :-1] for X in Xs]
return Ys, backprop
return with_list(Model("trimlist", _trim_list_forward))
def get_padded_model():
def _trim_padded_forward(model, Xp, is_train):
def backprop(dYp):
dY = dYp.data
dX = model.ops.alloc3f(dY.shape[0], dY.shape[1], dY.shape[2] + 1)
return Padded(dX, dYp.size_at_t, dYp.lengths, dYp.indices)
assert isinstance(Xp, Padded)
X = Xp.data
X = X.reshape((X.shape[0] * X.shape[1], X.shape[2]))
X = X[:, :-1]
X = X.reshape((Xp.data.shape[0], Xp.data.shape[1], X.shape[1]))
return Padded(X, Xp.size_at_t, Xp.lengths, Xp.indices), backprop
return with_padded(Model("trimpadded", _trim_padded_forward))
def get_ragged_model():
def _trim_ragged_forward(model, Xr, is_train):
def backprop(dYr):
dY = dYr.data
dX = model.ops.alloc2f(dY.shape[0], dY.shape[1] + 1)
return Ragged(dX, dYr.lengths)
return Ragged(Xr.data[:, :-1], Xr.lengths), backprop
return with_ragged(Model("trimragged", _trim_ragged_forward))
def check_initialize(model, inputs):
# Just check that these run and don't hit errors. I guess we should add a
# spy and check that model.layers[0].initialize gets called, but shrug?
model.initialize()
model.initialize(X=inputs)
model.initialize(X=inputs, Y=model.predict(inputs))
def check_transform_produces_correct_output_type_forward(model, inputs, checker):
# It's pretty redundant to check these three assertions, so if the tests
# get slow this could be removed. I think it should be fine though?
outputs = model.predict(inputs)
assert checker(inputs, outputs)
outputs, _ = model(inputs, is_train=True)
assert checker(inputs, outputs)
outputs, _ = model(inputs, is_train=False)
assert checker(inputs, outputs)
def check_transform_produces_correct_output_type_backward(model, inputs, checker):
# It's pretty redundant to check these three assertions, so if the tests
# get slow this could be removed. I think it should be fine though?
outputs, backprop = model.begin_update(inputs)
d_inputs = backprop(outputs)
assert checker(inputs, d_inputs)
def check_transform_doesnt_change_noop_values(model, inputs, d_outputs):
# Check that if we're wrapping a noop() layer in the transform, we don't
# change the output values.
outputs, backprop = model.begin_update(inputs)
d_inputs = backprop(d_outputs)
if isinstance(outputs, list):
for i in range(len(outputs)):
numpy.testing.assert_equal(inputs[i], outputs[i])
numpy.testing.assert_equal(d_outputs[i], d_inputs[i])
elif isinstance(outputs, numpy.ndarray):
numpy.testing.assert_equal(inputs, outputs)
numpy.testing.assert_equal(d_outputs, d_inputs)
elif isinstance(outputs, Ragged):
numpy.testing.assert_equal(inputs.data, outputs.data)
numpy.testing.assert_equal(d_outputs.data, d_inputs.data)
elif isinstance(outputs, Padded):
numpy.testing.assert_equal(inputs.data, outputs.data)
numpy.testing.assert_equal(d_inputs.data, d_inputs.data)
def test_noop_transforms(noop_models, ragged_input, padded_input, list_input):
# Make distinct backprop values,
# to check that the gradients get passed correctly
d_ragged = Ragged(ragged_input.data + 1, ragged_input.lengths)
d_padded = padded_input.copy()
d_padded.data += 1
d_list = [dx + 1 for dx in list_input]
for model in noop_models:
print(model.name)
check_transform_doesnt_change_noop_values(model, padded_input, d_padded)
check_transform_doesnt_change_noop_values(model, list_input, d_list)
check_transform_doesnt_change_noop_values(model, ragged_input, d_ragged)
def test_with_array_initialize(ragged_input, padded_input, list_input, array_input):
for inputs in (ragged_input, padded_input, list_input, array_input):
check_initialize(get_array_model(), inputs)
def test_with_padded_initialize(
ragged_input, padded_input, list_input, padded_data_input
):
for inputs in (ragged_input, padded_input, list_input, padded_data_input):
check_initialize(get_padded_model(), inputs)
def test_with_list_initialize(ragged_input, padded_input, list_input):
for inputs in (ragged_input, padded_input, list_input):
check_initialize(get_list_model(), inputs)
def test_with_ragged_initialize(
ragged_input, padded_input, list_input, ragged_data_input
):
for inputs in (ragged_input, padded_input, list_input, ragged_data_input):
check_initialize(get_ragged_model(), inputs)
def test_with_array_forward(ragged_input, padded_input, list_input, array_input):
for inputs in (ragged_input, padded_input, list_input, array_input):
checker = get_data_checker(inputs)
model = get_array_model()
check_transform_produces_correct_output_type_forward(model, inputs, checker)
def test_with_list_forward(ragged_input, padded_input, list_input):
for inputs in (ragged_input, padded_input, list_input):
checker = get_data_checker(inputs)
model = get_list_model()
check_transform_produces_correct_output_type_forward(model, inputs, checker)
def test_with_padded_forward(ragged_input, padded_input, list_input, padded_data_input):
for inputs in (ragged_input, padded_input, list_input, padded_data_input):
checker = get_data_checker(inputs)
model = get_padded_model()
check_transform_produces_correct_output_type_forward(model, inputs, checker)
def test_with_ragged_forward(ragged_input, padded_input, list_input, ragged_data_input):
for inputs in (ragged_input, padded_input, list_input, ragged_data_input):
checker = get_data_checker(inputs)
model = get_ragged_model()
check_transform_produces_correct_output_type_forward(model, inputs, checker)
def test_with_array_backward(ragged_input, padded_input, list_input, array_input):
for inputs in (ragged_input, padded_input, list_input, array_input):
checker = get_data_checker(inputs)
model = get_array_model()
check_transform_produces_correct_output_type_backward(model, inputs, checker)
def test_with_list_backward(ragged_input, padded_input, list_input):
for inputs in (ragged_input, padded_input, list_input):
checker = get_data_checker(inputs)
model = get_list_model()
check_transform_produces_correct_output_type_backward(model, inputs, checker)
def test_with_ragged_backward(
ragged_input, padded_input, list_input, ragged_data_input
):
for inputs in (ragged_input, padded_input, list_input, ragged_data_input):
checker = get_data_checker(inputs)
model = get_ragged_model()
check_transform_produces_correct_output_type_backward(model, inputs, checker)
def test_with_padded_backward(
ragged_input, padded_input, list_input, padded_data_input
):
for inputs in (ragged_input, padded_input, list_input, padded_data_input):
checker = get_data_checker(inputs)
model = get_padded_model()
check_transform_produces_correct_output_type_backward(model, inputs, checker)
def test_with_getitem():
data = (
numpy.asarray([[1, 2, 3, 4]], dtype="f"),
numpy.asarray([[5, 6, 7, 8]], dtype="f"),
)
model = with_getitem(1, Linear())
model.initialize(data, data)
Y, backprop = model.begin_update(data)
assert len(Y) == len(data)
assert numpy.array_equal(Y[0], data[0]) # the other item stayed the same
assert not numpy.array_equal(Y[1], data[1])
dX = backprop(Y)
assert numpy.array_equal(dX[0], data[0])
assert not numpy.array_equal(dX[1], data[1])
|