File: strategies.py

package info (click to toggle)
python-thinc 8.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 5,804 kB
  • sloc: python: 15,818; javascript: 1,554; ansic: 342; makefile: 20; sh: 13
file content (124 lines) | stat: -rw-r--r-- 3,586 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import numpy
from hypothesis.strategies import just, tuples, integers, floats
from hypothesis.extra.numpy import arrays
from thinc.api import NumpyOps, Linear


def get_ops():
    return NumpyOps()


def get_model(W_values, b_values):
    model = Linear(W_values.shape[0], W_values.shape[1], ops=NumpyOps())
    model.initialize()
    model.set_param("W", W_values)
    model.set_param("b", b_values)
    return model


def get_output(input_, W_values, b_values):
    return numpy.einsum("oi,bi->bo", W_values, input_) + b_values


def get_input(nr_batch, nr_in):
    ops = NumpyOps()
    return ops.alloc2f(nr_batch, nr_in)


def lengths(lo=1, hi=10):
    return integers(min_value=lo, max_value=hi)


def shapes(min_rows=1, max_rows=100, min_cols=1, max_cols=100):
    return tuples(lengths(lo=min_rows, hi=max_rows), lengths(lo=min_cols, hi=max_cols))


def ndarrays_of_shape(shape, lo=-10.0, hi=10.0, dtype="float32", width=32):
    if dtype.startswith("float"):
        return arrays(
            dtype, shape=shape, elements=floats(min_value=lo, max_value=hi, width=width)
        )
    else:
        return arrays(dtype, shape=shape, elements=integers(min_value=lo, max_value=hi))


def ndarrays(min_len=0, max_len=10, min_val=-10.0, max_val=10.0):
    return lengths(lo=1, hi=2).flatmap(
        lambda n: ndarrays_of_shape(n, lo=min_val, hi=max_val)
    )


def arrays_BI(min_B=1, max_B=10, min_I=1, max_I=100):
    shapes = tuples(lengths(lo=min_B, hi=max_B), lengths(lo=min_I, hi=max_I))
    return shapes.flatmap(ndarrays_of_shape)


def arrays_BOP(min_B=1, max_B=10, min_O=1, max_O=100, min_P=1, max_P=5):
    shapes = tuples(
        lengths(lo=min_B, hi=max_B),
        lengths(lo=min_O, hi=max_O),
        lengths(lo=min_P, hi=max_P),
    )
    return shapes.flatmap(ndarrays_of_shape)


def arrays_BOP_BO(min_B=1, max_B=10, min_O=1, max_O=100, min_P=1, max_P=5):
    shapes = tuples(
        lengths(lo=min_B, hi=max_B),
        lengths(lo=min_O, hi=max_O),
        lengths(lo=min_P, hi=max_P),
    )
    return shapes.flatmap(
        lambda BOP: tuples(ndarrays_of_shape(BOP), ndarrays_of_shape(BOP[:-1]))
    )


def arrays_BI_BO(min_B=1, max_B=10, min_I=1, max_I=100, min_O=1, max_O=100):
    shapes = tuples(
        lengths(lo=min_B, hi=max_B),
        lengths(lo=min_I, hi=max_I),
        lengths(lo=min_O, hi=max_O),
    )
    return shapes.flatmap(
        lambda BIO: tuples(
            ndarrays_of_shape((BIO[0], BIO[1])), ndarrays_of_shape((BIO[0], BIO[2]))
        )
    )


def arrays_OI_O_BI(
    min_batch=1, max_batch=16, min_out=1, max_out=16, min_in=1, max_in=16
):
    shapes = tuples(
        lengths(lo=min_batch, hi=max_batch),
        lengths(lo=min_in, hi=max_out),
        lengths(lo=min_in, hi=max_in),
    )

    def W_b_inputs(shape):
        batch_size, nr_out, nr_in = shape
        W = ndarrays_of_shape((nr_out, nr_in))
        b = ndarrays_of_shape((nr_out,))
        input_ = ndarrays_of_shape((batch_size, nr_in))
        return tuples(W, b, input_)

    return shapes.flatmap(W_b_inputs)


def arrays_OPFI_BI_lengths(max_B=5, max_P=3, max_F=5, max_I=8):
    shapes = tuples(
        lengths(hi=max_B),
        lengths(hi=max_P),
        lengths(hi=max_F),
        lengths(hi=max_I),
        arrays("int32", shape=(5,), elements=integers(min_value=1, max_value=10)),
    )

    strat = shapes.flatmap(
        lambda opfi_lengths: tuples(
            ndarrays_of_shape(opfi_lengths[:-1]),
            ndarrays_of_shape((sum(opfi_lengths[-1]), opfi_lengths[-2])),
            just(opfi_lengths[-1]),
        )
    )
    return strat