1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
---
title: Schedules
next: /docs/api-loss
---
Schedules are generators that provide different rates, schedules, decays or
series. They're typically used for batch sizes or learning rates. You can easily
implement your own schedules as well: just write your own generator function,
that produces whatever series of values you need. A common use case for
schedules is within [`Optimizer`](/docs/api-optimizer) objects, which accept
iterators for most of their parameters. See the
[training guide](/docs/usage-training) for details.
## constant {#constant tag="function"}
Yield a constant rate.

<grid>
```python
### {small="true"}
from thinc.api import constant
batch_sizes = constant(0.001)
batch_size = next(batch_sizes)
```
```ini
### config {small="true"}
[batch_size]
@schedules = "constant.v1"
rate = 0.001
```
</grid>
| Argument | Type |
| ---------- | -------------- |
| `rate` | <tt>float</tt> |
| **YIELDS** | <tt>float</tt> |
## constant_then {#constant_then tag="function"}
Yield a constant rate for N steps, before starting a schedule.

<grid>
```python
### {small="true"}
from thinc.api import constant_then, decaying
learn_rates = constant_then(
0.005,
1000,
decaying(0.005, 1e-4)
)
learn_rate = next(learn_rates)
```
```ini
### config {small="true"}
[learn_rates]
@schedules = "constant_then.v1"
rate = 0.005
steps = 1000
[learn_rates.schedule]
@schedules = "decaying"
base_rate = 0.005
decay = 1e-4
```
</grid>
| Argument | Type |
| ---------- | ------------------------ |
| `rate` | <tt>float</tt> |
| `steps` | <tt>int</tt> |
| `schedule` | <tt>Iterable[float]</tt> |
| **YIELDS** | <tt>float</tt> |
## decaying {#decaying tag="function"}
Yield an infinite series of linearly decaying values, following the schedule
`base_rate * 1 / (1 + decay * t)`.

<grid>
```python
### {small="true"}
from thinc.api import decaying
learn_rates = decaying(0.005, 1e-4)
learn_rate = next(learn_rates) # 0.001
learn_rate = next(learn_rates) # 0.00999
```
```ini
### config {small="true"}
[learn_rate]
@schedules = "decaying.v1"
base_rate = 0.005
decay = 1e-4
t = 0
```
</grid>
| Argument | Type |
| -------------- | -------------- |
| `base_rate` | <tt>float</tt> |
| `decay` | <tt>float</tt> |
| _keyword-only_ | |
| `t` | <tt>int</tt> |
| **YIELDS** | <tt>float</tt> |
## compounding {#compounding tag="function"}
Yield an infinite series of compounding values. Each time the generator is
called, a value is produced by multiplying the previous value by the compound
rate.

<grid>
```python
### {small="true"}
from thinc.api import compounding
batch_sizes = compounding(1.0, 32.0, 1.001)
batch_size = next(batch_sizes) # 1.0
batch_size = next(batch_sizes) # 1.0 * 1.001
```
```ini
### config {small="true"}
[batch_size]
@schedules = "compounding.v1"
start = 1.0
stop = 32.0
compound = 1.001
t = 0
```
</grid>
| Argument | Type |
| -------------- | -------------- |
| `start` | <tt>float</tt> |
| `stop` | <tt>float</tt> |
| `compound` | <tt>float</tt> |
| _keyword-only_ | |
| `t` | <tt>int</tt> |
| **YIELDS** | <tt>float</tt> |
## warmup_linear {#warmup_linear tag="function"}
Generate a series, starting from an initial rate, and then with a warmup period,
and then a linear decline. Used for learning rates.

<grid>
```python
### {small="true"}
from thinc.api import warmup_linear
learn_rates = warmup_linear(0.01, 3000, 6000)
learn_rate = next(learn_rates)
```
```ini
### config {small="true"}
[learn_rate]
@schedules = "warmup_linear.v1"
initial_rate = 0.01
warmup_steps = 3000
total_steps = 6000
```
</grid>
| Argument | Type |
| -------------- | -------------- |
| `initial_rate` | <tt>float</tt> |
| `warmup_steps` | <tt>int</tt> |
| `total_steps` | <tt>int</tt> |
| **YIELDS** | <tt>float</tt> |
## slanted_triangular {#slanted_triangular tag="function"}
Yield an infinite series of values according to
[Howard and Ruder's (2018)](https://arxiv.org/abs/1801.06146) "slanted
triangular learning rate" schedule.

<grid>
```python
### {small="true"}
from thinc.api import slanted_triangular
learn_rates = slanted_triangular(0.1, 5000)
learn_rate = next(learn_rates)
```
```ini
### config {small="true"}
[learn_rate]
@schedules = "slanted_triangular.v1"
max_rate = 0.1
num_steps = 5000
cut_frac = 0.1
ratio = 32
decay = 1.0
t = 0.1
```
</grid>
| Argument | Type |
| -------------- | -------------- |
| `max_rate` | <tt>float</tt> |
| `num_steps` | <tt>int</tt> |
| _keyword-only_ | |
| `cut_frac` | <tt>float</tt> |
| `ratio` | <tt>int</tt> |
| `decay` | <tt>float</tt> |
| `t` | <tt>float</tt> |
| **YIELDS** | <tt>float</tt> |
## cyclic_triangular {#cyclic_triangular tag="function"}
Linearly increasing then linearly decreasing the rate at each cycle.

<grid>
```python
### {small="true"}
from thinc.api import cyclic_triangular
learn_rates = cyclic_triangular(0.005, 0.001, 1000)
learn_rate = next(learn_rates)
```
```ini
### config {small="true"}
[learn_rate]
@schedules = "cyclic_triangular.v1"
min_lr = 0.005
max_lr = 0.001
period = 1000
```
</grid>
| Argument | Type |
| ---------- | -------------- |
| `min_lr` | <tt>float</tt> |
| `max_lr` | <tt>float</tt> |
| `period` | <tt>int</tt> |
| **YIELDS** | <tt>float</tt> |
|