1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
// Use grid strided loops, described here:
// https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
// This pattern ensures that all of the loop values are visited once, no matter
// what grid parameters are used for the function.
// We cannot include CUDA header for mathematical constants, since it requires
// that the development headers of the CUDA toolkit are installed.
template <typename T>
struct Constants {};
template <>
struct Constants<double> {
static constexpr double INV_SQRT_2 = 0.7071067811865475;
static constexpr double INV_SQRT_2PI = 0.3989422804014327;
};
template <>
struct Constants<float> {
static constexpr float INV_SQRT_2 = 0.70710677;
static constexpr float INV_SQRT_2PI = 0.3989423;
};
template <typename U>
__global__ void gather_add(U* out_bo, const U* table_to, const int* indices_bk,
int T, int O, int B, int K)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride) {
for (int k = 0; k < K; ++k) {
int idx = indices_bk[b * K + k];
const U* table = table_to + idx * O;
U* out = out_bo + b * O;
for (int o = 0; o < O; ++o) {
out[o] += table[o];
}
}
}
}
template <typename T>
__global__ void seq2col(T* output, const T* X, const int* lengths,
int nW, int B, int I, int nL)
{
// Let's say nW is 1 (it usually is). Then we want to take:
// 1a 1b 1c
// 2a 2b 2c
// 3a 3b 3c
// And make
// __ __ __ 1a 1b 1c 2a 2b 2c
// 1a 1b 1c 2a 2b 2c 3a 3b 3c
// 2a 2b 2c 3a 3b 3c __ __ __
// Where __ is padding.
// Now let's say nW is 2. Then we want to take:
// 1a 1b 1c
// 2a 2b 2c
// 3a 3b 3c
// And make
// __ __ __ __ __ __ 1a 1b 1c 2a 2b 2c 3a 3b 3c
// __ __ __ 1a 1b 1c 2a 2b 2c 3a 3b 3c __ __ __
// 1a 1b 1c 2a 2b 2c 3a 3b 3c __ __ __ __ __ __
// * x_start=-6, x_end=9 : (0-2) * 3, (0+2+1) * 3
// * x_start=-3, x_end=13 : (1-2) * 3, (1+2+1) * 3
// * x_start=0, x_end=16 : (2-2) * 3, (2+2+1) * 3
//
// If lengths > 1, then the sequence lengths dictate
// the boundaries/padding rather than the begin/end
// of X.
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int nF = nW * 2 + 1;
int seq = 0;
int seq_start = 0;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Find sequence sequence in which b lies.
for (; seq < nL; ++seq) {
if (b < seq_start + lengths[seq]) {
break;
}
seq_start += lengths[seq];
}
// Calculate the bounds of the sequence wherein b lies.
int seq_end = seq_start + lengths[seq];
// Find the unconstrained window around b, which
// may be out of the sequence bounds.
int window_start = b - nW;
int window_end = b + nW + 1;
// Find the sequence-constrained window around b.
int x_start = max(seq_start, window_start);
int x_end = min(seq_end, window_end);
int n_elems = x_end - x_start;
// If the left window is cut short, we want to start by
// the same amount in the output.
int out_offset = x_start - window_start;
for (int i = 0; i < n_elems * I; i++) {
output[(b * I * nF) + (out_offset * I) + i] =
X[(x_start * I) + i];
}
}
}
template <typename T>
__global__ void pad(T* out, T const **seqs, int const *lengths, int stride, int N, int L)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < L * stride; i += _loop_stride) {
for (int j = 0; j < N; ++j) {
T const *seq = seqs[j];
if (i < lengths[j] * stride) {
out[j * L * stride + i] = seq[i];
} else {
out[j * L * stride + i] = T();
}
}
}
}
template <typename T>
__global__ void maxout(T* best, int* which, const T* cands, int B, int O, int P)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int bo = _loop_start; bo < B * O; bo += _loop_stride)
{
// Go to the candidates at the output we're working on
const T* cands_bo = &cands[bo * P];
int best_idx = 0;
T best_val = cands_bo[0];
for (int p = 1; p < P; ++p)
{
if (cands_bo[p] > best_val) {
best_idx = p;
best_val = cands_bo[p];
}
}
which[bo] = best_idx;
best[bo] = best_val;
}
}
template <typename T>
__global__ void clipped_linear(T* Y, const T* X, double slope, double offset, double min_val, double max_val, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T y = X[i] * slope + offset;
Y[i] = min(max(y, min_val), max_val);
}
}
template <typename T>
__global__ void dish(T* Y, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
Y[i] = 0.5 * x * (x / sqrt(1 + x * x) + 1);
}
}
template <typename T>
__global__ void gelu(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold) {
Y[i] = x;
} else if (x <= -threshold) {
Y[i] = 0.0;
} else {
T cdf = 0.5 * (1.0 + erf(Constants<T>::INV_SQRT_2 * x));
Y[i] = x * cdf;
}
}
}
template <typename T>
__global__ void mish(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
T one = 1.;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] >= threshold)
Y[i] = X[i];
else
Y[i] = X[i] * tanh(log(one + exp(X[i])));
}
}
template <typename T>
__global__ void swish(T* Y, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] >= threshold) {
Y[i] = X[i];
} else if (X[i] <= -threshold) {
Y[i] = 0.0;
} else {
T logistic_cdf = 1.0 / (1.0 + exp(-X[i]));
Y[i] = X[i] * logistic_cdf;
}
}
}
template <typename U>
__global__ void reduce_sum(U* output, const U* X,
const int* lengths, int B, int T, int O)
{
// Compute sums of a batch of concatenated sequences
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
U* output_b = &output[b*O];
// Find the sequence item we're working on
int t = 0;
for (int i=0; i < b; ++i) {
t += lengths[i];
}
int length = lengths[b];
// Each invocation of the kernel sums one batch.
for (int i=0; i < length; ++i) // Iterate over rows
{
const U* X_t = &X[(t+i)*O];
for (int j=0; j < O; ++j)
{
output_b[j] += X_t[j];
}
}
}
}
template <typename U>
__global__ void reduce_max(U* maxes, int* which,
const U* X, const int* lengths, int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
U* maxes_b = &maxes[b*O];
int* which_b = &which[b*O];
// Find the sequence item we're working on
const U* X_t = X;
for (int i=0; i < b; ++i) {
X_t += lengths[i] * O;
}
// Each invocation of the kernel maxes one sequence.
// Start by assuming maxes are the first element.
for (int i=0; i < O; ++i) {
maxes_b[i] = X_t[i];
which_b[i] = 0;
}
int length = lengths[b];
for (int i=1; i < length; ++i) // Iterate over rows
{
X_t += O;
for (int j=0; j < O; ++j)
{
if (X_t[j] > maxes_b[j])
{
maxes_b[j] = X_t[j];
which_b[j] = i;
}
}
}
}
}
template <typename T>
__global__ void backprop_seq2col(T* d_seqs, const T* d_cols, const int* lengths,
int nW, int B, int I, int nL)
{
// Here's what we're doing, if we had 2d indexing.
//for i in range(B):
// d_seq[i] += d_cols[i-2, 4]
// d_seq[i] += d_cols[i-1, 3]
// d_seq[i] += d_cols[i, 2]
// d_seq[i] += d_cols[i+1, 1]
// d_seq[i] += d_cols[i+2, 0]
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int nF = nW * 2 + 1;
int seq = 0;
int seq_start = 0;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Find sequence offset in which b lies.
// Fixme: do not restart offset search for every b.
for (; seq < nL; ++seq) {
if (b < seq_start + lengths[seq]) {
break;
}
seq_start += lengths[seq];
}
// Calculate the bounds of the sequence wherein b lies.
int seq_end = seq_start + lengths[seq];
// Find the unconstrained window around b, which
// may be out of the sequence bounds.
int window_start = b - nW;
int window_end = b + nW + 1;
// Find the sequence-constrained window around b.
int d_seqs_start = max(seq_start, window_start);
int d_seqs_end = min(seq_end, window_end);
// The here update proceeds differently than the other seq2col
// implementations. We have to do all the updates for the b in this loop
// iteration, otherwise we get data races due to parallelism in CUDA.
//
// A batch item b occurs, given nw=1, in:
//
// position 0 in b - 1 (if present) <- window_start
// position 1 in b
// position 2 in b + 1 (if present) <- window_end
//
// The following loop sums the gradients for those occurrences.
// b_w loops over [b - 1, b, b + 1] and computes the position
// of b within the column gradients of [b - 1 ... b + 1].
for (int b_w = d_seqs_start; b_w < d_seqs_end; ++b_w) {
int position = (2 * nW) - (b_w - window_start);
int start = (b_w * I * nF) + (position * I);
for (int i = 0; i < I; ++i) {
d_seqs[(b*I + i)] += d_cols[start + i];
}
}
}
}
template <typename T>
__global__ void backprop_clipped_linear(T* dX, const T* dY, const T* X, double slope, double offset, double min_val, double max_val, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
T low = (min_val - offset) / slope;
T high = (max_val - offset) / slope;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (low < x && x < high) {
dX[i] = dY[i] * slope;
} else {
dX[i] = 0;
}
}
}
template <typename T>
__global__ void backprop_hard_swish(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] > 2.5) {
dX[i] = dY[i];
} else if (X[i] < -2.5) {
dX[i] = 0;
} else {
dX[i] = dY[i] * (X[i] * 0.4 + 0.5);
}
}
}
template <typename T>
__global__ void backprop_hard_swish_mobilenet(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
if (X[i] > 3.0) {
dX[i] = dY[i];
} else if (X[i] < -3.0) {
dX[i] = 0;
} else {
dX[i] = dY[i] * ((X[i] * 2.0 + 3.0) / 6.0);
}
}
}
template <typename T>
__global__ void backprop_dish(T* dX, const T* dY, const T* X, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
T x_sq = x * x;
T x_sq_plus_one = x_sq + 1.0;
dX[i] = dY[i] * (x/sqrt(x_sq_plus_one) - (0.5 * x * x_sq)
/ pow(x_sq_plus_one, static_cast<T>(1.5)) + 0.5);
}
}
template <typename T>
__global__ void backprop_gelu(T* dX, const T* dY, const T* X,
double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold) {
dX[i] = dY[i];
} else if (x <= -threshold) {
dX[i] = 0.0;
} else {
T cdf = 0.5 * (1.0 + erf(Constants<T>::INV_SQRT_2 * x));
T pdf = Constants<T>::INV_SQRT_2PI * exp(-0.5 * x * x);
dX[i] = dY[i] * (cdf + x * pdf);
}
}
}
template <typename T>
__global__ void backprop_maxout(T* dX,
const T* dY, const int* which, int B, int O, int P)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int b = _loop_start; b < B; b += _loop_stride)
{
// Go to the regions we're working on
T* dX_b = &dX[b*O*P];
const T* dY_b = &dY[b*O];
const int* which_b = &which[b*O];
for (int i=0; i < O; ++i)
dX_b[(i*P)+which_b[i]] = dY_b[i];
}
}
template <typename T>
__global__ void backprop_mish(T* dX,
const T* dY, const T* X, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
if (x >= threshold)
{
dX[i] = dY[i];
} else
{
T exp_x = exp(x);
T exp_2x = exp(2*x);
T exp_3x = exp(3*x);
T omega = (4. * (x+1)) + (4 * exp_2x) + exp_3x + exp_x * (4.*x+6);
T delta = 2 * exp_x + exp_2x + 2;
dX[i] = dY[i] * ((exp_x * omega) / (delta * delta));
}
}
}
template <typename T>
__global__ void backprop_swish(T* dX, const T* dY, const T* X,
const T* Y, double threshold, int N)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
for (int i = _loop_start; i < N; i += _loop_stride)
{
T x = X[i];
T y = Y[i];
if (x >= threshold) {
dX[i] = dY[i];
} else if (x <= -threshold) {
dX[i] = 0.0;
} else {
T cdf = 1.0 / (1 + exp(-x));
T d = y + cdf * (1 - y);
dX[i] = dY[i] * d;
}
}
}
template <typename U>
__global__ void backprop_reduce_sum(U* dX, const U* d_sum, const int* lengths,
int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// Find the sequence item we're working on
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
for (int i=0; i < O; ++i)
{
dX[t * O + i] = d_sum[b * O + i];
}
}
}
template <typename U>
__global__ void backprop_reduce_mean(U* dX, const U* d_mean, const int* lengths,
int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// Find the sequence item we're working on
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
U* dX_t = &dX[t * O];
const U* d_mean_b = &d_mean[b * O];
int lengths_b = lengths[b];
for (int i=0; i < O; ++i)
{
dX_t[i] = d_mean_b[i] / lengths_b;
}
}
}
template <typename U>
__global__ void backprop_reduce_max(U* dX, const U* d_maxes,
const int* which, const int* lengths, int B, int T, int O)
{
int _loop_start = blockIdx.x * blockDim.x + threadIdx.x;
int _loop_stride = blockDim.x * gridDim.x;
int seq_start = 0;
int b = 0;
for (int t = _loop_start; t < T; t += _loop_stride)
{
// We're calculating the gradient of the unpooled sequences, from
// the gradient of the maxes. In this loop, we're getting the gradient
// of a single sequence item, t. We need to know the sequence index,
// b.
while ((b < B) && (seq_start+lengths[b]) <= t)
{
seq_start += lengths[b];
b += 1;
}
if (lengths[b] == 0)
continue;
// The "which" array tells us which rows were selected as the max.
// So we need to find the index of our t in the sequence.
int index_of_t = t-seq_start;
// Get the rows we're dealing with, to avoid cluttering the loop
// with the index math.
U* dX_t = &dX[t*O];
const U* d_maxes_b = &d_maxes[b*O];
const int* which_b = &which[b*O];
// Now loop over our row.
for (int i=0; i < O; ++i)
{
// If we used the value for this cell,
// pass the gradient
if (which_b[i] == index_of_t)
dX_t[i] = d_maxes_b[i];
}
}
}
|