1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
|
import contextlib
import copy
import functools
import threading
from contextvars import ContextVar
from pathlib import Path
from typing import (
Any,
Callable,
Dict,
Generic,
Iterable,
Iterator,
List,
Optional,
Sequence,
Set,
Tuple,
TypeVar,
Union,
cast,
)
import srsly
from .backends import CupyOps, NumpyOps, Ops, ParamServer, get_current_ops
from .optimizers import Optimizer # noqa: F401
from .shims import Shim
from .types import FloatsXd
from .util import (
DATA_VALIDATION,
convert_recursive,
is_xp_array,
partial,
validate_fwd_input_output,
)
InT = TypeVar("InT")
OutT = TypeVar("OutT")
SelfT = TypeVar("SelfT", bound="Model")
context_operators: ContextVar[dict] = ContextVar("context_operators", default={})
def empty_init(model: "Model", *args, **kwargs) -> "Model":
return model
class Model(Generic[InT, OutT]):
"""Class for implementing Thinc models and layers."""
global_id: int = 0
global_id_lock: threading.Lock = threading.Lock()
_context_operators = context_operators
name: str
ops: Ops
id: int
_func: Callable
init: Callable
_params: ParamServer
_dims: Dict[str, Optional[int]]
_layers: List["Model"]
_shims: List[Shim]
_attrs: Dict[str, Any]
_has_params: Dict[str, Optional[bool]]
# This "locks" the class, so we get an error if you try to assign to
# an unexpected variable.
__slots__ = [
"name",
"id",
"ops",
"_func",
"init",
"_params",
"_dims",
"_attrs",
"_refs",
"_layers",
"_shims",
"_has_params",
]
def __init__(
self,
name: str,
forward: Callable,
*,
init: Optional[Callable] = None,
dims: Dict[str, Optional[int]] = {},
params: Dict[str, Optional[FloatsXd]] = {},
layers: Sequence["Model"] = [],
shims: List[Shim] = [],
attrs: Dict[str, Any] = {},
refs: Dict[str, Optional["Model"]] = {},
ops: Optional[Union[NumpyOps, CupyOps]] = None,
):
"""Initialize a new model."""
self.name = name
if init is None:
init = partial(empty_init, self)
# Assign to callable attrs: https://github.com/python/mypy/issues/2427
setattr(self, "_func", forward)
setattr(self, "init", init)
self.ops = ops if ops is not None else get_current_ops()
self._params = ParamServer()
self._dims = dict(dims)
self._attrs = dict(attrs)
self._refs = dict(refs)
self._layers = list(layers)
self._shims = list(shims)
# Take care to increment the base class here! It needs to be unique
# across all models.
with Model.global_id_lock:
Model.global_id += 1
self.id = Model.global_id
self._has_params = {}
for name, value in params.items():
self._has_params[name] = None
if value is not None:
self.set_param(name, value)
@property
def layers(self) -> List["Model"]:
"""A list of child layers of the model. You can append to it to add
layers but not reassign it.
"""
return self._layers
@property
def shims(self) -> List[Shim]:
return self._shims
@property
def attrs(self) -> Dict[str, Any]:
"""A dict of the model's attrs. You can write to it to update attrs but
not reassign it.
"""
return self._attrs
@property
def param_names(self) -> Tuple[str, ...]:
"""Get the names of registered parameter (including unset)."""
return tuple(self._has_params.keys())
@property
def grad_names(self) -> Tuple[str, ...]:
"""Get the names of parameters with registered gradients (including unset)."""
return tuple([name for name in self.param_names if self.has_grad(name)])
@property
def dim_names(self) -> Tuple[str, ...]:
"""Get the names of registered dimensions (including unset)."""
return tuple(self._dims.keys())
@property
def ref_names(self) -> Tuple[str, ...]:
"""Get the names of registered node references (including unset)."""
return tuple(self._refs.keys())
@classmethod
@contextlib.contextmanager
def define_operators(cls, operators: Dict[str, Callable]):
"""Bind arbitrary binary functions to Python operators, for use in any
`Model` instance. Can (and should) be used as a contextmanager.
EXAMPLE:
with Model.define_operators({">>": chain}):
model = Relu(512) >> Relu(512) >> Softmax()
"""
token = cls._context_operators.set(dict(operators))
yield
cls._context_operators.reset(token)
def has_dim(self, name: str) -> Optional[bool]:
"""Check whether the model has a dimension of a given name. If the
dimension is registered but the value is unset, returns None.
"""
if name not in self._dims:
return False
elif self._dims[name] is not None:
return True
else:
return None
def get_dim(self, name: str) -> int:
"""Retrieve the value of a dimension of the given name."""
if name not in self._dims:
raise KeyError(f"Cannot get dimension '{name}' for model '{self.name}'")
value = self._dims[name]
if value is None:
err = f"Cannot get dimension '{name}' for model '{self.name}': value unset"
raise ValueError(err)
else:
return value
def set_dim(self, name: str, value: int, *, force: bool = False) -> None:
"""Set a value for a dimension."""
if name not in self._dims:
raise KeyError(
f"Cannot set unknown dimension '{name}' for model '{self.name}'."
)
old_value = self._dims[name]
has_params = any(bool(y) for x, y in self._has_params.items())
invalid_change = (old_value is not None and old_value != value) and (
not force or force and has_params
)
if invalid_change:
err = f"Attempt to change dimension '{name}' for model '{self.name}' from {old_value} to {value}"
raise ValueError(err)
self._dims[name] = value
def maybe_get_dim(self, name: str) -> Optional[int]:
"""Retrieve the value of a dimension of the given name, or None."""
return self.get_dim(name) if self.has_dim(name) else None
def has_param(self, name: str) -> Optional[bool]:
"""Check whether the model has a weights parameter of the given name.
Returns None if the parameter is registered but currently unset.
"""
if name not in self._has_params:
return False
elif self._has_params[name] is not None:
return True
else:
return None
def get_param(self, name: str) -> FloatsXd:
"""Retrieve a weights parameter by name."""
if name not in self._has_params:
raise KeyError(f"Unknown param: '{name}' for model '{self.name}'.")
if not self._params.has_param(self.id, name):
raise KeyError(
f"Parameter '{name}' for model '{self.name}' has not been allocated yet."
)
return self._params.get_param(self.id, name)
def maybe_get_param(self, name: str) -> Optional[FloatsXd]:
"""Retrieve a weights parameter by name, or None."""
return self.get_param(name) if self.has_param(name) else None
def set_param(self, name: str, value: Optional[FloatsXd]) -> None:
"""Set a weights parameter's value."""
if value is None:
self._has_params[name] = None
else:
self._params.set_param(self.id, name, value)
self._has_params[name] = True
def has_grad(self, name: str) -> bool:
"""Check whether the model has a non-zero gradient for a parameter."""
return self._params.has_grad(self.id, name)
def get_grad(self, name: str) -> FloatsXd:
"""Get a gradient from the model."""
return self._params.get_grad(self.id, name)
def set_grad(self, name: str, value: FloatsXd) -> None:
"""Set a gradient value for the model."""
self._params.set_grad(self.id, name, value)
def maybe_get_grad(self, name: str) -> Optional[FloatsXd]:
"""Retrieve a gradient by name, or None."""
return self.get_grad(name) if self.has_grad(name) else None
def inc_grad(self, name: str, value: FloatsXd) -> None:
"""Increment the gradient of a parameter by a value."""
self._params.inc_grad(self.id, name, value)
def has_ref(self, name: str) -> Optional[bool]:
"""Check whether the model has a reference of a given name. If the
reference is registered but the value is unset, returns None.
"""
if name not in self._refs:
return False
elif self._refs[name] is not None:
return True
else:
return None
def get_ref(self, name: str) -> "Model":
"""Retrieve the value of a reference of the given name."""
if name not in self._refs:
raise KeyError(f"Cannot get reference '{name}' for model '{self.name}'.")
value = self._refs[name]
if value is None:
err = f"Cannot get reference '{name}' for model '{self.name}': value unset."
raise ValueError(err)
else:
return value
def maybe_get_ref(self, name: str) -> Optional["Model"]:
"""Retrieve the value of a reference if it exists, or None."""
return self.get_ref(name) if self.has_ref(name) else None
def set_ref(self, name: str, value: Optional["Model"]) -> None:
"""Set a value for a reference."""
if value is None:
self._refs[name] = value
elif value in self.walk():
self._refs[name] = value
else:
raise ValueError("Cannot add reference to node not in tree.")
def __call__(self, X: InT, is_train: bool) -> Tuple[OutT, Callable]:
"""Call the model's `forward` function, returning the output and a
callback to compute the gradients via backpropagation."""
return self._func(self, X, is_train=is_train)
def initialize(self, X: Optional[InT] = None, Y: Optional[OutT] = None) -> "Model":
"""Finish initialization of the model, optionally providing a batch of
example input and output data to perform shape inference."""
if DATA_VALIDATION.get():
validate_fwd_input_output(self.name, self._func, X, Y)
if self.init is not None:
self.init(self, X=X, Y=Y)
return self
def begin_update(self, X: InT) -> Tuple[OutT, Callable[[OutT], InT]]:
"""Run the model over a batch of data, returning the output and a
callback to complete the backward pass. A tuple (Y, finish_update),
where Y is a batch of output data, and finish_update is a callback that
takes the gradient with respect to the output and an optimizer function,
and returns the gradient with respect to the input.
"""
return self._func(self, X, is_train=True)
def predict(self, X: InT) -> OutT:
"""Call the model's `forward` function with `is_train=False`, and return
only the output, instead of the `(output, callback)` tuple.
"""
return self._func(self, X, is_train=False)[0]
def finish_update(self, optimizer: Optimizer) -> None:
"""Update parameters with current gradients. The optimizer is called
with each parameter and gradient of the model.
"""
for node in self.walk():
for shim in node.shims:
shim.finish_update(optimizer)
for node in self.walk():
for name in node.param_names:
if node.has_grad(name):
param, grad = optimizer(
(node.id, name), node.get_param(name), node.get_grad(name)
)
node.set_param(name, param)
@contextlib.contextmanager
def use_params(self, params: Dict[Tuple[int, str], FloatsXd]):
"""Context manager to temporarily set the model's parameters to
specified values. The params are a dictionary keyed by model IDs, whose
values are arrays of weight values.
"""
backup = {}
for name in self.param_names:
key = (self.id, name)
if key in params:
backup[name] = self.get_param(name)
self.set_param(name, params[key])
with contextlib.ExitStack() as stack:
for layer in self.layers:
stack.enter_context(layer.use_params(params))
for shim in self.shims:
stack.enter_context(shim.use_params(params))
yield
if backup:
for name, param in backup.items():
self.set_param(name, param)
def walk(self, *, order: str = "bfs") -> Iterable["Model"]:
"""Iterate out layers of the model.
Nodes are returned in breadth-first order by default. Other possible
orders are "dfs_pre" (depth-first search in preorder) and "dfs_post"
(depth-first search in postorder)."""
if order == "bfs":
return self._walk_bfs()
elif order == "dfs_pre":
return self._walk_dfs(post_order=False)
elif order == "dfs_post":
return self._walk_dfs(post_order=True)
else:
raise ValueError("Invalid order, must be one of: bfs, dfs_pre, dfs_post")
def _walk_bfs(self) -> Iterable["Model"]:
"""Iterate out layers of the model, breadth-first."""
queue = [self]
seen: Set[int] = set()
for node in queue:
if id(node) in seen:
continue
seen.add(id(node))
yield node
queue.extend(node.layers)
def _walk_dfs(self, post_order: bool = False) -> Iterable["Model"]:
"""Iterate out layers of the model, depth-first."""
seen: Dict[int, Iterator["Model"]] = dict()
stack = [self]
seen[id(self)] = iter(self.layers)
if not post_order:
yield self
while stack:
try:
next_child = next(seen[id(stack[-1])])
if not id(next_child) in seen:
if not post_order:
yield next_child
stack.append(next_child)
seen[id(next_child)] = iter(next_child.layers)
except StopIteration:
if post_order:
yield stack[-1]
stack.pop()
def remove_node(self, node: "Model") -> None:
"""Remove a node from all layers lists, and then update references.
References that no longer point to a node within the tree will be set
to `None`. For instance, let's say a node has its grandchild as a reference.
If the child is removed, the grandchild reference will be left dangling,
so will be set to None.
"""
for child in list(self.walk()):
while node in child.layers:
child.layers.remove(node)
tree = set(self.walk())
for node in tree:
for name in node.ref_names:
ref = node.get_ref(name)
if ref is not None and ref not in tree:
node.set_ref(name, None)
def replace_callbacks(
self, forward: Callable, *, init: Optional[Callable] = None
) -> None:
setattr(self, "_func", forward)
setattr(self, "init", init)
def replace_node(self, old: "Model", new: "Model") -> bool:
"""Replace a node anywhere it occurs within the model. Returns a boolean
indicating whether the replacement was made."""
seen = False
# We need to replace nodes in topological order of the transposed graph
# to ensure that a node's dependencies are processed before the node.
# This is equivalent to a post-order traversal of the original graph.
for node in list(self.walk(order="dfs_post")):
if node is old:
seen = True
else:
node._layers = [
new if layer is old else layer for layer in node._layers
]
for name in node.ref_names:
if node.get_ref(name) is old:
node.set_ref(name, new)
return seen
def get_gradients(self) -> Dict[Tuple[int, str], Tuple[FloatsXd, FloatsXd]]:
"""Get non-zero gradients of the model's parameters, as a dictionary
keyed by the parameter ID. The values are (weights, gradients) tuples.
"""
gradients = {}
for node in self.walk():
for name in node.grad_names:
param = node.get_param(name)
grad = node.get_grad(name)
gradients[(node.id, name)] = (param, grad)
return gradients
def copy(self: SelfT) -> SelfT:
"""
Create a copy of the model, its attributes, and its parameters. Any child
layers will also be deep-copied. The copy will receive a distinct `model.id`
value.
"""
return self._copy()
def _copy(
self: SelfT, seen: Optional[Dict[int, Union["Model", Shim]]] = None
) -> SelfT:
if seen is None:
seen = {}
params = {}
for name in self.param_names:
params[name] = self.get_param(name) if self.has_param(name) else None
copied_layers: List[Model] = []
for layer in self.layers:
if id(layer) in seen:
copied_layers.append(cast(Model, seen[id(layer)]))
else:
copied_layer = layer._copy(seen)
seen[id(layer)] = copied_layer
copied_layers.append(copied_layer)
copied_shims = []
for shim in self.shims:
if id(shim) in seen:
copied_shims.append(cast(Shim, seen[id(shim)]))
else:
copied_shim = shim.copy()
seen[id(shim)] = copied_shim
copied_shims.append(copied_shim)
copied: Model[InT, OutT] = Model(
self.name,
self._func,
init=self.init,
params=copy.deepcopy(params),
dims=copy.deepcopy(self._dims),
attrs=copy.deepcopy(self._attrs),
layers=copied_layers,
shims=copied_shims,
)
for name in self.grad_names:
copied.set_grad(name, self.get_grad(name).copy())
return cast(SelfT, copied)
def to_gpu(self, gpu_id: int) -> None: # pragma: no cover
"""Transfer the model to a given GPU device."""
import cupy.cuda.device
with cupy.cuda.device.Device(gpu_id):
self._to_ops(CupyOps())
def to_cpu(self) -> None: # pragma: no cover
"""Transfer the model to CPU."""
self._to_ops(NumpyOps())
def _to_ops(self, ops: Ops) -> None: # pragma: no cover
"""Common method for to_cpu/to_gpu."""
for node in self.walk():
node.ops = ops
for name in node.param_names:
if node.has_param(name):
node.set_param(name, ops.asarray_f(node.get_param(name)))
if node.has_grad(name):
node.set_grad(name, ops.asarray_f(node.get_grad(name)))
for shim in node.shims:
shim.to_device(ops.device_type, ops.device_id)
def to_bytes(self) -> bytes:
"""Serialize the model to a bytes representation. Models are usually
serialized using msgpack, so you should be able to call msgpack.loads()
on the data and get back a dictionary with the contents.
Serialization should round-trip identically, i.e. the same bytes should
result from loading and serializing a model.
"""
msg = self.to_dict()
to_numpy_le = partial(self.ops.to_numpy, byte_order="<")
msg = convert_recursive(is_xp_array, to_numpy_le, msg)
return srsly.msgpack_dumps(msg)
def to_disk(self, path: Union[Path, str]) -> None:
"""Serialize the model to disk. Most models will serialize to a single
file, which should just be the bytes contents of model.to_bytes().
"""
path = Path(path) if isinstance(path, str) else path
with path.open("wb") as file_:
file_.write(self.to_bytes())
def to_dict(self) -> Dict:
"""Serialize the model to a dict representation.
Serialization should round-trip identically, i.e. the same dict should
result from loading and serializing a model.
"""
# We separate out like this to make it easier to read the data in chunks.
# The shims might have large weights, while the nodes data will be
# small. The attrs are probably not very large, but could be.
# The lists are aligned, and refer to the order of self.walk().
msg: Dict[str, List] = {"nodes": [], "attrs": [], "params": [], "shims": []}
nodes = list(self.walk())
# Serialize references by their index into the flattened tree.
# This is the main reason we can't accept out-of-tree references:
# we'd have no way to serialize/deserialize them.
node_to_i: Dict[int, Optional[int]]
node_to_i = {node.id: i for i, node in enumerate(nodes)}
for i, node in enumerate(nodes):
refs: Dict[str, Optional[int]] = {}
invalid_refs: List[str] = []
for name in node.ref_names:
if not node.has_ref(name):
refs[name] = None
else:
ref = node.get_ref(name)
if ref.id in node_to_i:
refs[name] = node_to_i[ref.id]
else:
invalid_refs.append(name)
if invalid_refs:
raise ValueError(f"Cannot get references: {invalid_refs}")
dims = {}
for dim in node.dim_names:
dims[dim] = node.get_dim(dim) if node.has_dim(dim) else None
msg["nodes"].append(
{"index": i, "name": node.name, "dims": dims, "refs": refs}
)
for node in nodes:
attrs = {}
for name, value in node.attrs.items():
try:
attrs[name] = serialize_attr(value, value, name, node)
except TypeError:
continue
msg["attrs"].append(attrs)
for node in nodes:
msg["shims"].append([shim.to_bytes() for shim in node.shims])
for node in nodes:
params: Dict[str, Optional[FloatsXd]] = {}
for name in node.param_names:
if node.has_param(name):
params[name] = cast(Optional[FloatsXd], node.get_param(name))
else:
params[name] = None
msg["params"].append(params)
return msg
def from_bytes(self, bytes_data: bytes) -> "Model":
"""Deserialize the model from a bytes representation. Models are usually
serialized using msgpack, so you should be able to call msgpack.loads()
on the data and get back a dictionary with the contents.
Serialization should round-trip identically, i.e. the same bytes should
result from loading and serializing a model.
"""
msg = srsly.msgpack_loads(bytes_data)
msg = convert_recursive(is_xp_array, self.ops.asarray, msg)
return self.from_dict(msg)
def from_disk(self, path: Union[Path, str]) -> "Model":
"""Deserialize the model from disk. Most models will serialize to a single
file, which should just be the bytes contents of model.to_bytes().
"""
path = Path(path) if isinstance(path, str) else path
with path.open("rb") as file_:
bytes_data = file_.read()
return self.from_bytes(bytes_data)
def from_dict(self, msg: Dict) -> "Model":
if "nodes" not in msg.keys(): # pragma: no cover
err = "Trying to read a Model that was created with an incompatible version of Thinc"
raise ValueError(err)
nodes = list(self.walk())
if len(msg["nodes"]) != len(nodes):
raise ValueError("Cannot deserialize model: mismatched structure")
for i, node in enumerate(nodes):
info = msg["nodes"][i]
node.name = info["name"]
for dim, value in info["dims"].items():
if value is not None:
node.set_dim(dim, value)
for ref, ref_index in info["refs"].items():
if ref_index is None:
node.set_ref(ref, None)
else:
node.set_ref(ref, nodes[ref_index])
for attr, value in msg["attrs"][i].items():
default_value = node.attrs.get(attr)
loaded_value = deserialize_attr(default_value, value, attr, node)
node.attrs[attr] = loaded_value
for param_name, value in msg["params"][i].items():
if value is not None:
value = node.ops.asarray(value).copy()
node.set_param(param_name, value)
for i, shim_bytes in enumerate(msg["shims"][i]):
node.shims[i].from_bytes(shim_bytes)
return self
def can_from_disk(self, path: Union[Path, str], *, strict: bool = True) -> bool:
"""Check whether serialized data on disk is compatible with the model.
If 'strict', the function returns False if the model has an attribute
already loaded that would be changed.
"""
path = Path(path) if isinstance(path, str) else path
if path.is_dir() or not path.exists():
return False
with path.open("rb") as file_:
bytes_data = file_.read()
return self.can_from_bytes(bytes_data, strict=strict)
def can_from_bytes(self, bytes_data: bytes, *, strict: bool = True) -> bool:
"""Check whether the bytes data is compatible with the model. If 'strict',
the function returns False if the model has an attribute already loaded
that would be changed.
"""
try:
msg = srsly.msgpack_loads(bytes_data)
except ValueError:
return False
return self.can_from_dict(msg, strict=strict)
def can_from_dict(self, msg: Dict, *, strict: bool = True) -> bool:
"""Check whether a dictionary is compatible with the model.
If 'strict', the function returns False if the model has an attribute
already loaded that would be changed.
"""
if "nodes" not in msg.keys():
return False
nodes = list(self.walk())
if len(msg["nodes"]) != len(nodes):
return False
for i, node in enumerate(nodes):
info = msg["nodes"][i]
if strict and info["name"] != node.name:
return False
if len(msg["shims"][i]) != len(node.shims):
# TODO: The shims should have a check for this too, but
# for now we just check if the lengths match.
return False
for dim, value in info["dims"].items():
has_dim = node.has_dim(dim)
if has_dim is False:
return False
elif has_dim and node.get_dim(dim) != value:
return False
for param_name, value in msg["params"][i].items():
has_param = node.has_param(param_name)
if has_param is False:
return False
elif has_param and value is not None:
param = node.get_param(param_name)
if param.shape != value.shape:
return False
if strict:
for attr, value in msg["attrs"][i].items():
if attr in node.attrs:
try:
serialized = serialize_attr(
node.attrs[attr], node.attrs[attr], attr, node
)
except TypeError:
continue
if serialized != value:
return False
return True
def __add__(self, other: Any) -> "Model":
"""Apply the function bound to the '+' operator."""
if "+" not in self._context_operators.get():
raise TypeError("Undefined operator: +")
return self._context_operators.get()["+"](self, other)
def __sub__(self, other: Any) -> "Model":
"""Apply the function bound to the '-' operator."""
if "-" not in self._context_operators.get():
raise TypeError("Undefined operator: -")
return self._context_operators.get()["-"](self, other)
def __mul__(self, other: Any) -> "Model":
"""Apply the function bound to the '*' operator."""
if "*" not in self._context_operators.get():
raise TypeError("Undefined operator: *")
return self._context_operators.get()["*"](self, other)
def __matmul__(self, other: Any) -> "Model":
"""Apply the function bound to the '@' operator."""
if "@" not in self._context_operators.get():
raise TypeError("Undefined operator: @")
return self._context_operators.get()["@"](self, other)
def __div__(self, other: Any) -> "Model": # pragma: no cover
"""Apply the function bound to the '/' operator."""
if "/" not in self._context_operators.get():
raise TypeError("Undefined operator: /")
return self._context_operators.get()["/"](self, other)
def __truediv__(self, other: Any) -> "Model":
"""Apply the function bound to the '/' operator."""
if "/" not in self._context_operators.get():
raise TypeError("Undefined operator: /")
return self._context_operators.get()["/"](self, other)
def __floordiv__(self, other: Any) -> "Model":
"""Apply the function bound to the '//' operator."""
if "//" not in self._context_operators.get():
raise TypeError("Undefined operator: //")
return self._context_operators.get()["//"](self, other)
def __mod__(self, other: Any) -> "Model":
"""Apply the function bound to the '%' operator."""
if "%" not in self._context_operators.get():
raise TypeError("Undefined operator: %")
return self._context_operators.get()["%"](self, other)
def __pow__(self, other: Any, **kwargs) -> "Model":
"""Apply the function bound to the '**' operator."""
if "**" not in self._context_operators.get():
raise TypeError("Undefined operator: **")
return self._context_operators.get()["**"](self, other)
def __lshift__(self, other: Any) -> "Model":
"""Apply the function bound to the '<<' operator."""
if "<<" not in self._context_operators.get():
raise TypeError("Undefined operator: <<")
return self._context_operators.get()["<<"](self, other)
def __rshift__(self, other: Any) -> "Model":
"""Apply the function bound to the '>>' operator."""
if ">>" not in self._context_operators.get():
raise TypeError("Undefined operator: >>")
return self._context_operators.get()[">>"](self, other)
def __and__(self, other: Any) -> "Model":
"""Apply the function bound to the '&' operator."""
if "&" not in self._context_operators.get():
raise TypeError("Undefined operator: &")
return self._context_operators.get()["&"](self, other)
def __xor__(self, other: Any) -> "Model":
"""Apply the function bound to the '^' operator."""
if "^" not in self._context_operators.get():
raise TypeError("Undefined operator: ^")
return self._context_operators.get()["^"](self, other)
def __or__(self, other: Any) -> "Model":
"""Apply the function bound to the '|' operator."""
if "|" not in self._context_operators.get():
raise TypeError("Undefined operator: |")
return self._context_operators.get()["|"](self, other)
@functools.singledispatch
def serialize_attr(_: Any, value: Any, name: str, model: Model) -> bytes:
"""Serialize an attribute value (defaults to msgpack). You can register
custom serializers using the @serialize_attr.register decorator with the
type to serialize, e.g.: @serialize_attr.register(MyCustomObject).
"""
return srsly.msgpack_dumps(value)
@functools.singledispatch
def deserialize_attr(_: Any, value: Any, name: str, model: Model) -> Any:
"""Deserialize an attribute value (defaults to msgpack). You can register
custom deserializers using the @deserialize_attr.register decorator with the
type to deserialize, e.g.: @deserialize_attr.register(MyCustomObject).
"""
return srsly.msgpack_loads(value)
_ModelT = TypeVar("_ModelT", bound=Model)
def change_attr_values(model: _ModelT, mapping: Dict[str, Dict[str, Any]]) -> _ModelT:
"""Walk over the model's nodes, changing the value of attributes using the
provided mapping, which maps node names to attr names to attr values.
"""
for node in model.walk():
if node.name in mapping:
attrs = mapping[node.name]
for attr, value in attrs.items():
if attr in node.attrs:
node.attrs[attr] = value
return model
def set_dropout_rate(model: _ModelT, drop: float, attrs=["dropout_rate"]) -> _ModelT:
"""Walk over the model's nodes, setting the dropout rate. You can specify
one or more attribute names, by default it looks for ["dropout_rate"].
"""
for node in model.walk():
for attr in attrs:
if attr in node.attrs:
node.attrs[attr] = drop
return model
def wrap_model_recursive(model: Model, wrapper: Callable[[Model], _ModelT]) -> _ModelT:
"""Recursively wrap a model and its submodules. The model is updated
in-place."""
for node in list(model.walk()):
model.replace_node(node, wrapper(node))
return wrapper(model)
__all__ = [
"Model",
"serialize_attr",
"deserialize_attr",
"change_attr_values",
"set_dropout_rate",
"wrap_model_recursive",
]
|