1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
"""Generators that provide different rates, schedules, decays or series."""
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, Generator, Generic, Optional, Tuple, TypeVar
import numpy
from .config import registry
OutT = TypeVar("OutT")
class Schedule(Generic[OutT]):
"""Class for implementing Thinc schedules."""
name: str
_schedule: Callable
_attrs: Dict[str, Any]
__slots__ = ["name", "_schedule", "_attrs"]
def __init__(
self, name: str, schedule: Callable, *, attrs: Dict[str, Any] = {}
) -> None:
"""Initialize a new schedule.
name (str): The name of the schedule type.
schedule (Callable): The schedule function.
"""
self.name = name
self._schedule = schedule
self._attrs = dict(attrs)
def __call__(self, step: int, **extra) -> OutT:
"""Compute the schedule for a given step."""
if step < 0:
raise ValueError(f"Step must be non-negative, was: {step}")
return self._schedule(self, step, **extra)
@property
def attrs(self):
"""Schedule attributes."""
return self._attrs
def to_generator(
self, start: int = 0, step_size=1, **extra
) -> Generator[OutT, None, None]:
"""Turn the schedule into a generator.
start (int): The schedule initial step.
step_size (int): The amount to increase the step for each generated value.
**extra: Additional arguments that are passed to the schedule.
RETURNS (Generator[OutT, None, None]): The generator.
"""
if start < 0:
raise ValueError(f"Schedule start must be non-negative, was: {start}")
if step_size < 0:
raise ValueError(f"Step size must be non-negative, was: {step_size}")
def generate():
for step in itertools.count(start, step_size):
yield self(step, **extra)
return generate()
@registry.schedules("constant_then.v1")
def constant_then(rate: OutT, steps: int, schedule: Schedule[OutT]) -> Schedule[OutT]:
"""Yield a constant rate for N steps, before starting a schedule."""
return Schedule(
"constant_then",
_constant_then_schedule,
attrs={"rate": rate, "steps": steps, "schedule": schedule},
)
def _constant_then_schedule(schedule: Schedule, step: int, **kwargs) -> float:
rate = schedule.attrs["rate"]
steps = schedule.attrs["steps"]
schedule = schedule.attrs["schedule"]
if step < steps:
return rate
else:
return schedule(step=step, **kwargs)
@registry.schedules("constant.v1")
def constant(rate: OutT) -> Schedule[OutT]:
"""Yield a constant rate."""
return Schedule("constant", _constant_schedule, attrs={"rate": rate})
def _constant_schedule(schedule: Schedule, step: int, **kwargs) -> float:
rate = schedule.attrs["rate"]
return rate
@registry.schedules("decaying.v1")
def decaying(base_rate: float, decay: float, *, t: float = 0.0) -> Schedule[float]:
"""Yield an infinite series of linearly decaying values,
following the schedule: base_rate * 1 / (1 + decay * (t + step))
EXAMPLE:
>>> learn_rates = decaying(0.001, 1e-4)
>>> next(learn_rates)
0.001
>>> next(learn_rates)
0.00999
"""
return Schedule(
"decaying",
_decaying_schedule,
attrs={"base_rate": base_rate, "decay": decay, "t": t},
)
def _decaying_schedule(schedule: Schedule, step: int, **kwargs) -> float:
base_rate = schedule.attrs["base_rate"]
decay = schedule.attrs["decay"]
t = schedule.attrs["t"]
return base_rate * (1.0 / (1.0 + decay * (step + t)))
@registry.schedules("compounding.v1")
def compounding(
start: float, stop: float, compound: float, *, t: float = 0.0
) -> Schedule[float]:
"""Yield an infinite series of compounding values. Each time the
generator is called, a value is produced by multiplying the previous
value by the compound rate.
EXAMPLE:
>>> sizes = compounding(1.0, 10.0, 1.5)
>>> assert next(sizes) == 1.
>>> assert next(sizes) == 1 * 1.5
>>> assert next(sizes) == 1.5 * 1.5
"""
return Schedule(
"compounding",
_compounding_schedule,
attrs={"start": start, "stop": stop, "compound": compound, "t": t},
)
def _compounding_schedule(schedule: Schedule, step: int, **kwargs) -> float:
start = schedule.attrs["start"]
stop = schedule.attrs["stop"]
compound = schedule.attrs["compound"]
t = schedule.attrs["t"]
return _clip(start * (compound ** (step + t)), start, stop)
def _clip(value: float, start: float, stop: float) -> float:
return max(value, stop) if (start > stop) else min(value, stop)
@registry.schedules("plateau.v1")
def plateau(
max_patience: int, scale: float, schedule: Schedule[float]
) -> Schedule[float]:
"""Yields values from the wrapped schedule, exponentially scaled by the
number of times optimization has plateaued. The caller must pass model
evaluation scores through the last_score argument for the scaling to be
adjusted. The last evaluation score is passed through the last_score argument
as a tuple (last_score_step, last_score). This tuple indicates when a model
was last evaluated (last_score_step) and with what score (last_score).
max_patience (int): the number of evaluations without improvement when
we consider the model to have plateaued.
scale (float): scaling of the inner schedule (scale**n_plateaus * inner).
schedule (Schedule[float]): the schedule to wrap.
"""
return Schedule(
"plateau",
_plateau_schedule,
attrs={
"scale": scale,
"max_patience": max_patience,
"schedule": schedule,
"state": _PlateauState(
best_score=None, last_score_step=None, patience=0, n_plateaus=0
),
},
)
def _plateau_schedule(
schedule: Schedule,
step: int,
*,
last_score: Optional[Tuple[int, float]] = None,
**kwargs,
) -> float:
inner_schedule: Schedule[float] = schedule.attrs["schedule"]
max_patience: int = schedule.attrs["max_patience"]
scale: float = schedule.attrs["scale"]
state: _PlateauState = schedule.attrs["state"]
if last_score is None:
return (scale**state.n_plateaus) * inner_schedule(
step=step, last_score=last_score, **kwargs
)
last_score_step, last_score_ = last_score
if (
state.best_score is None
or state.last_score_step is None
or last_score_ > state.best_score
):
state.best_score = last_score_
state.patience = 0
elif last_score_step < state.last_score_step:
raise ValueError(
f"Expected score with step >= {state.last_score_step}, was: {last_score_step}"
)
elif last_score_step > state.last_score_step:
# If the score didn't improve and we are not seeing the last
# score again, we may be at a plateau, so increase patience.
state.patience += 1
# If we are at the maximum patience, we consider the optimization
# to have reached a plateau.
if state.patience == max_patience:
state.n_plateaus += 1
state.patience = 0
state.last_score_step = last_score_step
return (scale**state.n_plateaus) * inner_schedule(
step=step, last_score=last_score, **kwargs
)
@dataclass
class _PlateauState:
"""Plateau schedule state.
best_score (Optional[float]): the best score so far, or None when no
score has been observed.
last_score_step (Optional[int]): the step of the last score that was
observed.
patience (int): the number of scores so far which do not improve over
the best score (reset after reaching the maximum patience).
n_plateaus (int): the number of times the maximum patience has been
reached.
"""
best_score: Optional[float]
last_score_step: Optional[int]
patience: int
n_plateaus: int
# @dataclass(slots=True) is only supported in Python >= 3.10
__slots__ = ["best_score", "last_score_step", "patience", "n_plateaus"]
@registry.schedules("slanted_triangular.v1")
def slanted_triangular(
max_rate: float,
num_steps: int,
*,
cut_frac: float = 0.1,
ratio: int = 32,
t: float = 0.0,
) -> Schedule[float]:
"""Yield an infinite series of values according to Howard and Ruder's
"slanted triangular learning rate" schedule.
"""
cut = int(num_steps * cut_frac)
return Schedule(
"slanted_triangular",
_slanted_triangular_schedule,
attrs={
"max_rate": max_rate,
"cut": cut,
"cut_frac": cut_frac,
"ratio": ratio,
"t": t,
},
)
def _slanted_triangular_schedule(schedule: Schedule, step: int, **kwargs) -> float:
max_rate = schedule.attrs["max_rate"]
cut = schedule.attrs["cut"]
cut_frac = schedule.attrs["cut_frac"]
ratio = schedule.attrs["ratio"]
t = schedule.attrs["t"]
t_step = step + t + 1.0
if t_step < cut:
p = t_step / cut
else:
p = 1 - ((t_step - cut) / (cut * (1 / cut_frac - 1)))
return max_rate * (1 + p * (ratio - 1)) * (1 / ratio)
@registry.schedules("warmup_linear.v1")
def warmup_linear(
initial_rate: float, warmup_steps: int, total_steps: int
) -> Schedule[float]:
"""Generate a series, starting from an initial rate, and then with a warmup
period, and then a linear decline. Used for learning rates.
"""
return Schedule(
"warmup_linear",
_warmup_linear_schedule,
attrs={
"initial_rate": initial_rate,
"warmup_steps": warmup_steps,
"total_steps": total_steps,
},
)
def _warmup_linear_schedule(schedule: Schedule, step: int, **kwargs) -> float:
initial_rate = schedule.attrs["initial_rate"]
warmup_steps = schedule.attrs["warmup_steps"]
total_steps = schedule.attrs["total_steps"]
if step < warmup_steps:
factor = step / max(1, warmup_steps)
else:
factor = max(0.0, (total_steps - step) / max(1.0, total_steps - warmup_steps))
return factor * initial_rate
@registry.schedules("cyclic_triangular.v1")
def cyclic_triangular(min_lr: float, max_lr: float, period: int) -> Schedule[float]:
return Schedule(
"cyclic_triangular",
_cyclic_triangular_schedule,
attrs={"min_lr": min_lr, "max_lr": max_lr, "period": period},
)
def _cyclic_triangular_schedule(schedule: Schedule, step: int, **kwargs) -> float:
min_lr = schedule.attrs["min_lr"]
max_lr = schedule.attrs["max_lr"]
period = schedule.attrs["period"]
it = step + 1
# https://towardsdatascience.com/adaptive-and-cyclical-learning-rates-using-pytorch-2bf904d18dee
cycle = numpy.floor(1 + it / (2 * period))
x = numpy.abs(it / period - 2 * cycle + 1)
relative = max(0, 1 - x)
return min_lr + (max_lr - min_lr) * relative
__all__ = [
"cyclic_triangular",
"warmup_linear",
"constant",
"constant_then",
"decaying",
"warmup_linear",
"slanted_triangular",
"compounding",
]
|