File: test_ops.py

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (1606 lines) | stat: -rw-r--r-- 52,701 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
import inspect
import platform
from typing import Tuple, cast

import numpy
import pytest
from hypothesis import given, settings
from hypothesis.strategies import composite, integers
from numpy.testing import assert_allclose
from packaging.version import Version

from thinc.api import (
    LSTM,
    CupyOps,
    NumpyOps,
    Ops,
    fix_random_seed,
    get_current_ops,
    get_ops,
    use_ops,
)
from thinc.backends._custom_kernels import KERNELS, KERNELS_LIST, compile_mmh
from thinc.compat import has_cupy_gpu, has_torch, torch_version
from thinc.types import Floats2d
from thinc.util import torch2xp, xp2torch

from .. import strategies
from ..strategies import arrays_BI, ndarrays_of_shape

MAX_EXAMPLES = 10

VANILLA_OPS = Ops(numpy)  # type:ignore
NUMPY_OPS = NumpyOps()
BLIS_OPS = NumpyOps(use_blis=True)
CPU_OPS = [NUMPY_OPS, VANILLA_OPS]
XP_OPS = [NUMPY_OPS]
if has_cupy_gpu:
    XP_OPS.append(CupyOps())
ALL_OPS = XP_OPS + [VANILLA_OPS]

FLOAT_TYPES = ["float32", "float64"]
INT_TYPES = ["int32", "int64"]

REDUCTIONS = ["reduce_first", "reduce_last", "reduce_max", "reduce_mean", "reduce_sum"]

REDUCE_ZERO_LENGTH_RAISES = [
    ("reduce_first", True),
    ("reduce_last", True),
    ("reduce_max", True),
    # From a mathematical perspective we'd want mean reduction to raise for
    # zero-length sequences, since floating point numbers are not a monoid
    # under averaging. However, floret relies on reduce_mean to return a
    # zero-vector in this case.
    ("reduce_mean", False),
    ("reduce_sum", False),
]


def create_pytorch_funcs():
    import math

    import torch

    def torch_relu(x):
        return torch.nn.functional.relu(x)

    def torch_relu_k(x):
        return torch.nn.functional.relu6(x)

    def torch_hard_sigmoid(x):
        return torch.clip(x * 0.2 + 0.5, 0, 1)

    def torch_hard_tanh(x):
        return torch.nn.functional.hardtanh(x)

    def torch_mish(x):
        return torch.nn.functional.mish(x)

    def torch_swish(x):
        return torch.nn.functional.silu(x)

    def torch_hard_swish(x):
        return x * torch_hard_sigmoid(x)

    def torch_hard_swish_mobilenet(x):
        return torch.nn.functional.hardswish(x)

    def torch_sigmoid(x):
        return torch.sigmoid(x)

    def torch_dish(x):
        return 0.5 * x * (x / (1 + x * x).sqrt() + 1)

    # https://github.com/huggingface/transformers/blob/master/src/transformers/activations.py#L37
    def torch_gelu_approx(x):
        return (
            0.5
            * x
            * (
                1.0
                + torch.tanh(
                    math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))
                )
            )
        )

    def torch_gelu(x):
        return torch.nn.functional.gelu(x)

    return [
        ("relu", torch_relu),
        ("relu_k", torch_relu_k),
        ("hard_sigmoid", torch_hard_sigmoid),
        ("hard_tanh", torch_hard_tanh),
        ("mish", torch_mish),
        ("swish", torch_swish),
        ("hard_swish", torch_hard_swish),
        ("hard_swish_mobilenet", torch_hard_swish_mobilenet),
        ("dish", torch_dish),
        ("gelu_approx", torch_gelu_approx),
        ("gelu", torch_gelu),
        ("sigmoid", torch_sigmoid),
    ]


if has_torch:
    TORCH_FUNCS = create_pytorch_funcs()
else:
    TORCH_FUNCS = []


@pytest.mark.parametrize("op", [NumpyOps, CupyOps])
def test_ops_consistency(op):
    """Test that specific ops don't define any methods that are not on the
    Ops base class and that all ops methods define the exact same arguments."""
    attrs = [m for m in dir(op) if not m.startswith("_")]
    for attr in attrs:
        assert hasattr(Ops, attr)
        method = getattr(op, attr)
        if hasattr(method, "__call__"):
            sig = inspect.signature(method)
            params = [p for p in sig.parameters][1:]
            base_sig = inspect.signature(getattr(Ops, attr))
            base_params = [p for p in base_sig.parameters][1:]
            assert params == base_params, attr
            defaults = [p.default for p in sig.parameters.values()][1:]
            base_defaults = [p.default for p in base_sig.parameters.values()][1:]
            assert defaults == base_defaults, attr
            # If args are type annotated, their types should be the same
            annots = [p.annotation for p in sig.parameters.values()][1:]
            base_annots = [p.annotation for p in base_sig.parameters.values()][1:]
            for i, (p1, p2) in enumerate(zip(annots, base_annots)):
                if p1 != inspect.Parameter.empty and p2 != inspect.Parameter.empty:
                    # Need to check string value to handle TypeVars etc.
                    assert str(p1) == str(p2), attr


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
def test_adam_incorrect_inputs(ops):
    one = ops.xp.zeros(1, dtype="f")
    two = ops.xp.zeros(2, dtype="f")

    ops.adam(one, one, one, one, 0.0, 0.0, 0.0, 0.0)
    with pytest.raises(ValueError):
        ops.adam(two, one, one, one, 0.0, 0.0, 0.0, 0.0)
    with pytest.raises(ValueError):
        ops.adam(one, two, one, one, 0.0, 0.0, 0.0, 0.0)
    with pytest.raises(ValueError):
        ops.adam(one, one, two, one, 0.0, 0.0, 0.0, 0.0)
    with pytest.raises(ValueError):
        ops.adam(one, one, one, two, 0.0, 0.0, 0.0, 0.0)


@pytest.mark.parametrize("ops", ALL_OPS)
def test_alloc(ops):
    float_methods = (ops.alloc1f, ops.alloc2f, ops.alloc3f, ops.alloc4f)
    for i, method in enumerate(float_methods):
        shape = (1,) * (i + 1)
        arr = method(*shape)
        assert arr.dtype == numpy.float32
        assert arr.ndim == len(shape)
        arr = ops.alloc_f(shape)
        assert arr.dtype == numpy.float32
        assert arr.ndim == len(shape)
    int_methods = (ops.alloc1i, ops.alloc2i, ops.alloc3i, ops.alloc4i)
    for i, method in enumerate(int_methods):
        shape = (1,) * (i + 1)
        arr = method(*shape)
        assert arr.dtype == numpy.int32
        assert arr.ndim == len(shape)
        arr = ops.alloc_i(shape)
        assert arr.dtype == numpy.int32
        assert arr.ndim == len(shape)
    assert ops.alloc(1).ndim == 1


@pytest.mark.parametrize("ops", XP_OPS)
def test_hash_gives_distinct_keys(ops):
    ids = ops.alloc1f(5, dtype="uint64")
    keys = ops.hash(ids, 0)
    assert keys.shape == (5, 4)
    assert keys.dtype == "uint32"
    for i in range(len(ids)):
        for j in range(keys.shape[1]):
            assert keys[i, j] != 0


@pytest.mark.parametrize("ops", XP_OPS)
def test_get_dropout_empty(ops):
    shape = (2, 2)
    drop = 0.0
    mask = ops.get_dropout_mask(shape, drop)
    if drop <= 0.0:
        assert mask[mask == 1.0].all()
    else:
        assert mask[mask != 1.0].all()


@pytest.mark.parametrize("ops", XP_OPS)
def test_get_dropout_not_empty(ops):
    shape = (200, 200)
    drop = 0.5
    mask = ops.get_dropout_mask(shape, drop)
    assert (mask > 1.0).any()
    assert (mask == 0.0).any()
    assert mask.shape == shape


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@pytest.mark.parametrize("index_dtype", ["int32", "uint32"])
def test_gather_add(ops, dtype, index_dtype):
    table = ops.xp.arange(12, dtype=dtype).reshape(4, 3)
    indices = ops.xp.array([[0, 2], [3, 1], [0, 1]], dtype=index_dtype)
    gathered = ops.gather_add(table, indices)
    ops.xp.testing.assert_allclose(
        gathered, [[6.0, 8.0, 10.0], [12.0, 14.0, 16.0], [3.0, 5.0, 7.0]]
    )


@pytest.mark.parametrize("ops", XP_OPS)
@given(table=strategies.arrays_BI())
def test_gather_add_against_numpy(ops, table):
    table = ops.asarray(table)
    indices = ops.xp.arange(100, dtype="i").reshape(25, 4) % table.shape[0]
    ops.xp.testing.assert_allclose(
        ops.gather_add(table, indices),
        table[indices].sum(1),
        atol=1e-5,
    )


@pytest.mark.parametrize("ops", ALL_OPS)
def test_gather_add_oob_raises(ops):
    table = ops.xp.arange(12, dtype="f").reshape(4, 3)
    indices = ops.xp.array([[0, 2], [3, 1], [5, 1]], dtype="i")
    with pytest.raises(IndexError):
        ops.gather_add(table, indices)


@pytest.mark.parametrize("ops", CPU_OPS)
def test_seq2col_window_one_small(ops):
    seq = ops.asarray([[1.0], [3.0], [4.0], [5]], dtype="float32")
    cols = ops.seq2col(seq, 1)
    if hasattr(cols, "get"):
        cols = cols.get()
    assert_allclose(cols[0], [0.0, 1.0, 3.0])
    assert_allclose(cols[1], [1.0, 3.0, 4.0])
    assert_allclose(cols[2], [3.0, 4.0, 5.0])
    assert_allclose(cols[3], [4.0, 5.0, 0.0])


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BOP())
def test_maxout(ops, dtype, X):
    X = ops.asarray(X, dtype=dtype)
    expected_best = X.max(axis=-1).astype(dtype)
    predicted_best, which = ops.maxout(X)
    assert predicted_best.dtype == dtype
    ops.xp.testing.assert_allclose(
        expected_best, predicted_best, rtol=0.001, atol=0.001
    )

    # Can't compare 'which' directly, as sort order might be different.
    # So, instead we use 'which' to extract elements from X and then
    # check the result against the expected output.
    ops.xp.testing.assert_allclose(
        ops.xp.take_along_axis(X, ops.xp.expand_dims(which, -1), axis=-1),
        ops.xp.expand_dims(expected_best, -1),
        atol=1e-10,
    )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_maxout(ops, dtype):
    dX = ops.backprop_maxout(
        ops.asarray2f([[1.0, 2.0], [3.0, 4.0]], dtype=dtype),
        ops.asarray2i([[1, 0], [2, 1]]),
        3,
    )
    assert dX.dtype == dtype
    ops.xp.testing.assert_allclose(
        dX,
        [[[0.0, 1.0, 0.0], [2.0, 0.0, 0.0]], [[0.0, 0.0, 3.0], [0.0, 4.0, 0.0]]],
    )

    with pytest.raises(IndexError):
        ops.backprop_maxout(
            ops.asarray2f([[1.0, 2.0], [3.0, 4.0]]), ops.asarray2i([[1, 0], [3, 1]]), 3
        )


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_seq2col_window_one(ops, X):
    X = ops.asarray(X)
    base_ops = Ops()
    base_ops.xp = ops.xp
    baseX = base_ops.alloc(X.shape) + X
    target = base_ops.seq2col(base_ops.asarray(baseX), nW=1)
    predicted = ops.seq2col(X, nW=1)
    ops.xp.testing.assert_allclose(target, predicted, atol=0.001, rtol=0.001)


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_lengths_all_zero(ops, dtype):
    # Empty batch
    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.seq2col(
            ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.xp.zeros((0,), dtype="int32")
        ),
    )

    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.backprop_seq2col(
            ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.xp.zeros((0,), dtype="int32")
        ),
    )

    # Zero-length sequence
    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.seq2col(ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.asarray1i([0])),
    )

    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.backprop_seq2col(
            ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.asarray1i([0])
        ),
    )

    # Multiple zero-length sequences
    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.seq2col(ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.asarray1i([0, 0])),
    )

    ops.xp.testing.assert_allclose(
        ops.alloc((0, 0), dtype=dtype),
        ops.backprop_seq2col(
            ops.alloc((0, 0), dtype=dtype), 1, lengths=ops.asarray1i([0, 0])
        ),
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_lengths_zero_first_last(ops, dtype):
    cols_check = ops.asarray2f(
        [
            [0, 0, 0, 1, 2, 3, 4, 5, 6],
            [1, 2, 3, 4, 5, 6, 7, 8, 9],
            [4, 5, 6, 7, 8, 9, 10, 11, 12],
            [7, 8, 9, 10, 11, 12, 13, 14, 15],
            [10, 11, 12, 13, 14, 15, 0, 0, 0],
        ],
        dtype=dtype,
    )

    grad_check = ops.asarray2f(
        [[2, 4, 6], [12, 15, 18], [21, 24, 27], [30, 33, 36], [26, 28, 30]], dtype=dtype
    )

    # Initial zero-length sequence
    ops.xp.testing.assert_allclose(
        cols_check,
        ops.seq2col(
            ops.xp.arange(1.0, 16.0, dtype=dtype).reshape(5, 3),
            1,
            lengths=ops.asarray1i([0, 5]),
        ),
    )

    ops.xp.testing.assert_allclose(
        grad_check,
        ops.backprop_seq2col(
            cols_check,
            1,
            lengths=ops.asarray1i([0, 5]),
        ),
    )

    # Final zero-length sequence.
    ops.xp.testing.assert_allclose(
        cols_check,
        ops.seq2col(
            ops.xp.arange(1.0, 16.0, dtype=dtype).reshape(5, 3),
            1,
            lengths=ops.asarray1i([5, 0]),
        ),
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_lengths_zero_between(ops, dtype):
    cols_check = ops.asarray2f(
        [
            [0, 0, 0, 1, 2, 3, 4, 5, 6],
            [1, 2, 3, 4, 5, 6, 7, 8, 9],
            [4, 5, 6, 7, 8, 9, 10, 11, 12],
            [7, 8, 9, 10, 11, 12, 13, 14, 15],
            [10, 11, 12, 13, 14, 15, 0, 0, 0],
            [0, 0, 0, 16, 17, 18, 19, 20, 21],
            [16, 17, 18, 19, 20, 21, 0, 0, 0],
        ],
        dtype=dtype,
    )

    grad_check = ops.asarray2f(
        [
            [2, 4, 6],
            [12, 15, 18],
            [21, 24, 27],
            [30, 33, 36],
            [26, 28, 30],
            [32, 34, 36],
            [38, 40, 42],
        ],
        dtype=dtype,
    )

    # Zero-length between.
    ops.xp.testing.assert_allclose(
        cols_check,
        ops.seq2col(
            ops.xp.arange(1.0, 22.0, dtype=dtype).reshape(7, 3),
            1,
            lengths=ops.asarray1i([5, 0, 2]),
        ),
    )

    ops.xp.testing.assert_allclose(
        grad_check,
        ops.backprop_seq2col(
            cols_check,
            1,
            lengths=ops.asarray1i([5, 0, 2]),
        ),
    )

    # Zero-length between twice.
    ops.xp.testing.assert_allclose(
        cols_check,
        ops.seq2col(
            ops.xp.arange(1.0, 22.0, dtype=dtype).reshape(7, 3),
            1,
            lengths=ops.asarray1i([5, 0, 0, 2]),
        ),
    )

    ops.xp.testing.assert_allclose(
        grad_check,
        ops.backprop_seq2col(
            cols_check,
            1,
            lengths=ops.asarray1i([5, 0, 0, 2]),
        ),
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_window_one_lengths(ops, dtype):
    X = ops.xp.arange(1.0, 16.0, dtype=dtype).reshape(5, 3)
    lengths = ops.asarray1i([1, 3, 1])
    cols = ops.seq2col(X, 1, lengths=lengths)
    ops.xp.testing.assert_allclose(
        ops.asarray2f(
            [
                [0, 0, 0, 1, 2, 3, 0, 0, 0],
                [0, 0, 0, 4, 5, 6, 7, 8, 9],
                [4, 5, 6, 7, 8, 9, 10, 11, 12],
                [7, 8, 9, 10, 11, 12, 0, 0, 0],
                [0, 0, 0, 13, 14, 15, 0, 0, 0],
            ],
            dtype=dtype,
        ),
        cols,
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_window_two_lengths(ops, dtype):
    X = ops.xp.arange(1.0, 16.0, dtype=dtype).reshape(5, 3)
    lengths = ops.asarray1i([1, 3, 1])
    cols = ops.seq2col(X, 2, lengths=lengths)
    ops.xp.testing.assert_allclose(
        ops.asarray2f(
            [
                [0, 0, 0, 0, 0, 0, 1, 2, 3, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12],
                [0, 0, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 0, 0],
                [4, 5, 6, 7, 8, 9, 10, 11, 12, 0, 0, 0, 0, 0, 0],
                [0, 0, 0, 0, 0, 0, 13, 14, 15, 0, 0, 0, 0, 0, 0],
            ],
            dtype=dtype,
        ),
        cols,
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_seq2col_window_one_small(ops, dtype):
    cols = ops.asarray(
        [[0.0, 0.0, 0.0], [-1.0, 0.0, 1.0], [2.0, 0.0, 0.0]], dtype=dtype
    )
    expected = [[-1.0], [2.0], [1.0]]
    seq = ops.backprop_seq2col(cols, 1)
    if not isinstance(seq, numpy.ndarray):
        seq = seq.get()
    assert_allclose(seq, expected, atol=0.001, rtol=0.001)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_backprop_seq2col_window_one(ops, dtype, X):
    if X.shape[1] % 3:
        return None
    X = ops.asarray(X, dtype=dtype)
    if ops.xp.abs(X).max() >= 30:
        return None
    base_ops = Ops()
    base_ops.xp = ops.xp
    target = base_ops.backprop_seq2col(X, nW=1)
    predicted = ops.backprop_seq2col(X, nW=1)
    for row in range(target.shape[0]):
        diff = target[row].sum() - predicted[row].sum()
        if diff < -0.1 or diff > 0.1:
            print(row, diff)
            print(target[row])
            print(predicted[row])
    ops.xp.testing.assert_allclose(target, predicted, atol=0.001, rtol=0.001)


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_seq2col_window_one_lengths(ops, dtype):
    d_y = ops.xp.arange(0.1, 4.6, step=0.1, dtype=dtype).reshape(5, 9)
    lengths = ops.asarray1i([1, 3, 1])
    d_seqs = ops.backprop_seq2col(d_y, 1, lengths=lengths)

    ops.xp.testing.assert_allclose(
        ops.asarray2f(
            [
                [0.4, 0.5, 0.6],
                [3.2, 3.4, 3.6],
                [6.6, 6.9, 7.2],
                [5.6, 5.8, 6.0],
                [4.0, 4.1, 4.2],
            ],
            dtype=dtype,
        ),
        d_seqs,
        atol=1e-6,
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_seq2col_window_two(ops, dtype):
    seq = ops.asarray([[1.0], [2.0], [3.0], [4]], dtype=dtype)
    cols = ops.seq2col(seq, 2)
    if not isinstance(cols, numpy.ndarray):
        cols = cols.get()
    assert_allclose(cols[0], [0.0, 0.0, 1.0, 2.0, 3.0])
    assert_allclose(cols[1], [0.0, 1.0, 2.0, 3.0, 4.0])
    assert_allclose(cols[2], [1.0, 2.0, 3.0, 4.0, 0.0])
    assert_allclose(cols[3], [2.0, 3.0, 4.0, 0.0, 0.0])


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_seq2col_window_two_lengths(ops, dtype):
    d_y = ops.xp.arange(0.1, 7.6, step=0.1, dtype=dtype).reshape(5, 15)
    lengths = ops.asarray1i([1, 3, 1])
    d_seqs = ops.backprop_seq2col(d_y, 2, lengths=lengths)

    ops.xp.testing.assert_allclose(
        ops.asarray2f(
            [
                [0.7, 0.8, 0.9],
                [10.2, 10.5, 10.8],
                [11.1, 11.4, 11.7],
                [12.0, 12.3, 12.6],
                [6.7, 6.8, 6.9],
            ],
            dtype=dtype,
        ),
        d_seqs,
    )


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_seq2col_window_two(ops, dtype):
    cols = ops.asarray(
        [
            [0.0, 0.0, 1.0, 2.0, 3.0],
            [0.0, 1.0, 2.0, 3.0, 4.0],
            [1.0, 2.0, 3.0, 4.0, 0.0],
            [2.0, 3.0, 4.0, 0.0, 0.0],
        ],
        dtype=dtype,
    )
    # We're summing the values that each row
    # was used as a feature. So row 0 had a
    # gradient of 1 in row 0, 1 in row 2, and
    # 1 in row 3.
    expected = ops.asarray(
        [
            [1 + 1 + 1.0 + 0.0],
            [2.0 + 2.0 + 2.0 + 2.0],
            [3.0 + 3.0 + 3.0 + 3.0],
            [0.0 + 4.0 + 4.0 + 4.0],
        ],
        dtype=dtype,
    )
    seq = ops.backprop_seq2col(cols, 2)
    ops.xp.testing.assert_allclose(seq, expected, atol=0.001, rtol=0.001)


@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/CuPy")
@pytest.mark.parametrize("nW", [1, 2])
def test_large_seq2col_gpu_against_cpu(nW):
    cupy_ops = CupyOps()
    numpy_ops = NumpyOps()

    # Use array with a large enough batch to require multiple
    # CUDA grids.
    batch_size = 128 * 128 * 2  # threads per block * blocks * 2
    X = numpy_ops.xp.random.randn(batch_size * 2).astype("float32").reshape(-1, 2)
    X_gpu = cupy_ops.asarray2f(X)

    # Use somewhat interesting sequence lengths.
    lengths = numpy_ops.asarray1i([1, 4, 2, 1] * (batch_size // 8))
    lengths_gpu = cupy_ops.asarray1i(lengths)

    cols = numpy_ops.seq2col(X, nW=nW, lengths=lengths)
    cols_gpu = cupy_ops.seq2col(X_gpu, nW=nW, lengths=lengths_gpu)

    assert_allclose(cols, cols_gpu.get())


@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/CuPy")
@pytest.mark.parametrize("nW", [1, 2])
def test_large_backprop_seq2col_gpu_against_cpu(nW):
    cupy_ops = CupyOps()
    numpy_ops = NumpyOps()

    # Use array with a large enough batch to require multiple
    # CUDA grids.
    batch_size = 128 * 128 * 2  # threads per block * blocks * 2
    nF = 2 * nW + 1
    d_cols = (
        numpy_ops.xp.random.randn(batch_size * nF).astype("float32").reshape(-1, nF)
    )
    d_cols_gpu = cupy_ops.asarray2f(d_cols)

    # Use somewhat interesting sequence lengths.
    lengths = numpy_ops.asarray1i([1, 4, 2, 1] * (batch_size // 8))
    lengths_gpu = cupy_ops.asarray1i(lengths)

    d_seqs = numpy_ops.backprop_seq2col(d_cols, nW=nW, lengths=lengths)
    d_seqs_gpu = cupy_ops.backprop_seq2col(d_cols_gpu, nW=nW, lengths=lengths_gpu)

    assert_allclose(d_seqs, d_seqs_gpu.get())


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_backprop_reduce_sum(ops, dtype, X):
    X = ops.asarray(X, dtype=dtype)
    if ops.xp.abs(X).max() >= 5:
        return None
    lengths = ops.asarray([3] * len(X), dtype="i")
    out = ops.backprop_reduce_sum(X, lengths)
    assert out.dtype == dtype
    assert out.shape == (sum(lengths), X.shape[1])
    start = 0
    for i, length in enumerate(lengths):
        ops.xp.testing.assert_allclose(
            out[start : start + length].sum(axis=0), X[i] * length, rtol=0.01, atol=0.01
        )
        start += length


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_softmax_sums_to_one(ops, X):
    y = ops.softmax(ops.asarray(X))
    for row in y:
        assert 0.99999 <= row.sum() <= 1.0001


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_softmax_works_inplace(ops, X):
    X = ops.asarray(X)
    X = ops.softmax(X, inplace=True)
    for row in X:
        assert 0.99999 <= row.sum() <= 1.00001


def torch_softmax_with_temperature(
    X: Floats2d, dY: Floats2d, temperature: float
) -> Tuple[Floats2d, Floats2d]:
    import torch

    Xt = xp2torch(X, requires_grad=True)
    dYt = xp2torch(dY)

    Xt_temp = Xt / temperature

    Yt = torch.nn.functional.softmax(Xt_temp, dim=-1)
    Yt.backward(dYt)

    return cast(Floats2d, torch2xp(Yt)), cast(
        Floats2d, torch2xp(cast(torch.Tensor, Xt.grad))
    )


@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("temperature", [0.5, 1.0, 2.0])
def test_softmax_temperature(ops, temperature):
    X = ops.xp.arange(-10, 10, 0.2, dtype="f").reshape(10, 10)
    dY = ops.xp.eye(10, dtype="f")

    Y = ops.softmax(X, temperature=temperature)
    dX = ops.backprop_softmax(Y, dY, temperature=temperature)

    Yt, dXt = torch_softmax_with_temperature(X, dY, temperature)

    ops.xp.testing.assert_allclose(Y, Yt, atol=1e-6)
    ops.xp.testing.assert_allclose(dX, dXt, atol=1e-6)


@pytest.mark.parametrize("cpu_ops", [*CPU_OPS, BLIS_OPS])
def test_gemm_computes_correctly(cpu_ops):
    W = numpy.zeros((3, 2), dtype="f")
    X = numpy.zeros((4, 2), dtype="f")
    W += numpy.random.uniform(size=W.size).reshape(W.shape)
    X += numpy.random.uniform(size=X.size).reshape(X.shape)
    Y = cpu_ops.gemm(X, W, trans2=True)
    expected = numpy.dot(X, W.T)
    assert_allclose(expected, Y, atol=1e-4, rtol=1e-4)
    W = numpy.zeros((2, 3), dtype="f")
    X = numpy.zeros((2, 4), dtype="f")
    W += numpy.random.uniform(size=W.size).reshape(W.shape)
    X += numpy.random.uniform(size=X.size).reshape(X.shape)
    Y = cpu_ops.gemm(X, W, trans1=True)
    expected = numpy.dot(X.T, W)
    assert_allclose(expected, Y, atol=1e-4, rtol=1e-4)
    cpu_ops.gemm(X, W, trans1=True, out=Y)


@pytest.mark.parametrize("cpu_ops", [*CPU_OPS, BLIS_OPS])
def test_gemm_out_used(cpu_ops):
    a = b = numpy.zeros((2, 2), dtype="f")
    c = numpy.ones((2, 2), dtype="f")
    cpu_ops.gemm(a, b, out=c)
    assert numpy.array_equal(c, numpy.zeros((2, 2)))


@pytest.mark.parametrize("cpu_ops", CPU_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_flatten_unflatten_roundtrip(cpu_ops, X):
    flat = cpu_ops.flatten([x for x in X])
    assert flat.ndim == 1
    unflat = cpu_ops.unflatten(flat, [len(x) for x in X])
    assert_allclose(X, unflat)
    flat2 = cpu_ops.flatten([x for x in X], pad=1, dtype="f")
    assert len(flat2) > len(flat)
    unflat2 = cpu_ops.unflatten(flat2, [len(x) for x in X], pad=1)
    assert_allclose(X, unflat2)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES + INT_TYPES)
def test_pad(ops, dtype):
    X = [ops.xp.arange(1, 3, dtype=dtype), ops.xp.arange(1, 5, dtype=dtype)]
    ops.xp.testing.assert_allclose(ops.pad(X), [[1, 2, 0, 0], [1, 2, 3, 4]])
    ops.xp.testing.assert_allclose(
        ops.pad(X, round_to=8), [[1, 2, 0, 0, 0, 0, 0, 0], [1, 2, 3, 4, 0, 0, 0, 0]]
    )

    X = [
        ops.xp.arange(1, 5, dtype=dtype).reshape(2, 2),
        ops.xp.arange(1, 9, dtype=dtype).reshape(4, 2),
    ]
    ops.xp.testing.assert_allclose(
        ops.pad(X),
        [
            [[1, 2], [3, 4], [0, 0], [0, 0]],
            [[1, 2], [3, 4], [5, 6], [7, 8]],
        ],
    )

    ops.xp.testing.assert_allclose(
        ops.pad(X, round_to=5),
        [
            [[1, 2], [3, 4], [0, 0], [0, 0], [0, 0]],
            [[1, 2], [3, 4], [5, 6], [7, 8], [0, 0]],
        ],
    )

    with pytest.raises(ValueError, match=r"Rounding for padding must at least be 1"):
        ops.pad(X, round_to=0)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_sum(ops, dtype):
    X = ops.asarray2f(
        [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [1.0, 2.0], [3.0, 4.0]], dtype=dtype
    )
    lengths = ops.asarray1i([3, 2])
    ops.xp.testing.assert_allclose(
        ops.reduce_sum(X, lengths), [[9.0, 12.0], [4.0, 6.0]]
    )

    # Zero-length array
    lengths = ops.asarray1i([3, 0, 2])
    ops.xp.testing.assert_allclose(
        ops.reduce_sum(X, lengths), [[9.0, 12.0], [0.0, 0.0], [4.0, 6.0]]
    )

    with pytest.raises(IndexError):
        ops.reduce_sum(X, ops.xp.array([5, 5, 5, 5], dtype="i"))

    with pytest.raises(ValueError):
        ops.reduce_sum(X, ops.xp.array([-1, 10, 5, 5], dtype="i"))


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_fails_with_incorrect_length(ops, dtype):
    with pytest.raises(ValueError, match=r"lengths must be"):
        ops.backprop_reduce_sum(
            ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
            ops.xp.array([-1, 2], dtype="int32"),
        )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_first(ops, dtype):
    X = ops.asarray2f(
        [[1.0, 6.0], [2.0, 7.0], [3.0, 8.0], [4.0, 9.0], [5.0, 10.0]], dtype=dtype
    )
    lengths = ops.asarray1i([3, 2])
    Y, starts_ends = ops.reduce_first(X, lengths)
    ops.xp.testing.assert_array_equal(starts_ends, ops.asarray1i([0, 3, 5]))
    ops.xp.testing.assert_allclose(Y, [[1.0, 6.0], [4.0, 9.0]])

    lengths = ops.asarray1i([3, 0, 2])
    with pytest.raises(ValueError, match=r"all sequence lengths must be > 0"):
        ops.reduce_last(X, lengths)

    lengths = ops.asarray1i([3, 2, 1])
    with pytest.raises(IndexError, match=r"lengths must sum up to the number of rows"):
        ops.reduce_last(X, lengths)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_reduce_first(ops, dtype):
    dY = ops.asarray2f([[1.0, 3.0], [2.0, 4.0]], dtype=dtype)
    starts_ends = ops.asarray1i([0, 3, 5])
    dX = ops.backprop_reduce_first(dY, starts_ends)
    ops.xp.testing.assert_allclose(
        dX, [[1.0, 3.0], [0.0, 0.0], [0.0, 0.0], [2.0, 4.0], [0.0, 0.0]]
    )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_last(ops, dtype):
    X = ops.asarray2f(
        [[1.0, 6.0], [2.0, 7.0], [3.0, 8.0], [4.0, 9.0], [5.0, 10.0]], dtype=dtype
    )
    lengths = ops.asarray1i([3, 2])
    Y, lasts = ops.reduce_last(X, lengths)
    ops.xp.testing.assert_array_equal(lasts, ops.asarray1i([2, 4]))
    ops.xp.testing.assert_allclose(Y, [[3.0, 8.0], [5.0, 10.0]])

    lengths = ops.asarray1i([3, 0, 2])
    with pytest.raises(ValueError, match=r"all sequence lengths must be > 0"):
        ops.reduce_last(X, lengths)

    lengths = ops.asarray1i([3, 2, 1])
    with pytest.raises(IndexError, match=r"lengths must sum up to the number of rows"):
        ops.reduce_last(X, lengths)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_reduce_last(ops, dtype):
    dY = ops.asarray2f([[1.0, 3.0], [2.0, 4.0]], dtype=dtype)
    lasts = ops.asarray1i([2, 4])
    dX = ops.backprop_reduce_last(dY, lasts)
    ops.xp.testing.assert_allclose(
        dX, [[0.0, 0.0], [0.0, 0.0], [1.0, 3.0], [0.0, 0.0], [2.0, 4.0]]
    )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_max_sm(ops, dtype):
    X = ops.xp.zeros((6, 3), dtype=dtype)
    X += ops.xp.random.uniform(-1, 1, X.shape)
    lengths = ops.xp.array([2, 2, 2], dtype="i")
    maxes, which = ops.reduce_max(X, lengths)
    assert maxes.dtype == dtype
    assert ops.xp.all(which >= 0)
    assert ops.xp.all(which < X.shape[0])

    start = 0
    for i, length in enumerate(lengths):
        truth = X[start : start + length].max(axis=0)
        ops.xp.testing.assert_allclose(maxes[i], truth)
        start += length


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_max(ops, dtype):
    m = ops.xp.zeros((19, 5), dtype=dtype)
    m += ops.xp.random.uniform(-1, 1, m.shape)
    lengths = ops.xp.array([5, 5, 3, 6], dtype="i")
    # m[4, 0] = 1
    # m[0, 1] = 2
    # m[1, 3] = 3
    maxes, which = ops.reduce_max(m, lengths)
    assert maxes.dtype == dtype
    assert ops.xp.all(which >= 0)
    assert ops.xp.all(which < m.shape[0])

    start = 0
    for i, length in enumerate(lengths):
        truth = m[start : start + length].max(axis=0)
        ops.xp.testing.assert_allclose(maxes[i], truth)
        start += length

    with pytest.raises(IndexError):
        ops.reduce_max(m, ops.xp.array([5, 5, 5, 5], dtype="i"))

    with pytest.raises(ValueError):
        ops.reduce_max(m, ops.xp.array([-1, 10, 5, 5], dtype="i"))

    with pytest.raises(ValueError):
        ops.reduce_max(m, ops.xp.array([5, 5, 0, 3, 6], dtype="i"))


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_reduce_max(ops, dtype):
    dX = ops.backprop_reduce_max(
        ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
        ops.xp.array([[2, 1, 0], [1, 0, 1]]).astype("int32"),
        ops.xp.array([3, 2], dtype="int32"),
    )
    assert dX.dtype == dtype
    ops.xp.testing.assert_allclose(
        dX,
        [
            [0.0, 0.0, 3.0],
            [0.0, 2.0, 0.0],
            [1.0, 0.0, 0.0],
            [0.0, 5.0, 0.0],
            [4.0, 0.0, 6.0],
        ],
    )

    with pytest.raises(IndexError):
        ops.backprop_reduce_max(
            ops.xp.arange(1, 7, dtype="f").reshape(2, 3),
            ops.xp.array([[2, 3, 0], [1, 0, 1]]).astype("int32"),
            ops.xp.array([3, 2], dtype="int32"),
        )

    with pytest.raises(ValueError):
        ops.backprop_reduce_max(
            ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
            ops.xp.array([[2, 1, 0], [1, 0, 1]]).astype("int32"),
            ops.xp.array([-3, 2], dtype="int32"),
        )

    with pytest.raises(ValueError):
        ops.backprop_reduce_max(
            ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
            ops.xp.array([[2, 1, 0], [1, 0, 1], [1, 0, 1]]).astype("int32"),
            ops.xp.array([3, 0, 2], dtype="int32"),
        )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_reduce_mean(ops, dtype):
    X = ops.asarray2f(
        [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [1.0, 2.0], [3.0, 4.0]], dtype=dtype
    )
    lengths = ops.asarray1i([3, 2])
    ops.xp.testing.assert_allclose(
        ops.reduce_mean(X, lengths), [[3.0, 4.0], [2.0, 3.0]]
    )

    # Zero-length array
    lengths = ops.asarray1i([3, 0, 2])
    ops.xp.testing.assert_allclose(
        ops.reduce_mean(X, lengths), [[3.0, 4.0], [0.0, 0.0], [2.0, 3.0]]
    )

    # Zero-length array last.
    X = ops.asarray2f([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=dtype)
    lengths = ops.asarray1i([3, 0])
    ops.xp.testing.assert_allclose(
        ops.reduce_mean(X, lengths), [[3.0, 4.0], [0.0, 0.0]]
    )

    with pytest.raises(IndexError):
        ops.reduce_mean(X, ops.xp.array([3, 3], dtype="i"))

    with pytest.raises(ValueError):
        ops.reduce_mean(X, ops.xp.array([-1, 5], dtype="i"))


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
def test_backprop_reduce_mean(ops, dtype):
    dX = ops.backprop_reduce_mean(
        ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
        ops.xp.array([4, 2], dtype="int32"),
    )
    assert dX.dtype == dtype
    ops.xp.testing.assert_allclose(
        dX,
        [
            [0.25, 0.5, 0.75],
            [0.25, 0.5, 0.75],
            [0.25, 0.5, 0.75],
            [0.25, 0.5, 0.75],
            [2.0, 2.5, 3.0],
            [2.0, 2.5, 3.0],
        ],
    )

    with pytest.raises(ValueError, match=r"lengths must be"):
        ops.backprop_reduce_mean(
            ops.xp.arange(1, 7, dtype=dtype).reshape(2, 3),
            ops.xp.array([-1, 2], dtype="int32"),
        )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@pytest.mark.parametrize("reduction", REDUCTIONS)
def test_reduce_empty_batch(ops, dtype, reduction):
    func = getattr(ops, reduction)
    backprop_func = getattr(ops, f"backprop_{reduction}")

    lengths = ops.asarray1i([])
    Y = func(ops.alloc((0, 10), dtype=dtype), lengths)

    if reduction == "reduce_max":
        Y, which = Y
        dX = backprop_func(Y, which, lengths)
    elif isinstance(Y, tuple):
        Y, extra = Y
        dX = backprop_func(Y, extra)
    else:
        dX = backprop_func(Y, lengths)

    assert Y.shape == (0, 10)
    assert dX.shape == (0, 10)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@pytest.mark.parametrize("reduction", REDUCTIONS)
def test_reduce_empty_hidden(ops, dtype, reduction):
    func = getattr(ops, reduction)
    backprop_func = getattr(ops, f"backprop_{reduction}")

    lengths = ops.asarray1i([2, 3])
    Y = func(ops.alloc((5, 0), dtype=dtype), lengths)

    if reduction == "reduce_max":
        Y, which = Y
        dX = backprop_func(Y, which, lengths)
    elif isinstance(Y, tuple):
        Y, extra = Y
        dX = backprop_func(Y, extra)
    else:
        dX = backprop_func(Y, lengths)

    assert Y.shape == (2, 0)
    assert dX.shape == (5, 0)


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@pytest.mark.parametrize("reduction_raises", REDUCE_ZERO_LENGTH_RAISES)
def test_reduce_zero_seq_length(ops, dtype, reduction_raises):
    reduction_str, raises = reduction_raises
    reduction = getattr(ops, reduction_str)
    X = ops.asarray2f(
        [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [1.0, 2.0], [3.0, 4.0]], dtype=dtype
    )
    lengths = ops.asarray1i([3, 0, 2])

    if raises:
        with pytest.raises(ValueError):
            reduction(X, lengths)
    else:
        # All non-raising reductions have zero as their identity element.
        ops.xp.testing.assert_allclose(reduction(X, lengths)[1], [0.0, 0.0])


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_mish(ops, X):
    X = ops.asarray(X)
    Y = ops.mish(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize("dtype", FLOAT_TYPES)
@pytest.mark.parametrize(
    "op",
    [
        "backprop_clipped_linear",
        "backprop_dish",
        "backprop_gelu",
        "backprop_gelu_approx",
        "backprop_hard_sigmoid",
        "backprop_hard_swish",
        "backprop_hard_swish_mobilenet",
        "backprop_hard_tanh",
        "backprop_mish",
        "backprop_relu",
        "backprop_relu_k",
        "backprop_softmax",
        "backprop_swish",
    ],
)
def test_eltwise_backprop_rejects_incorrect_shapes(ops, dtype, op):
    backprop = getattr(ops, op)
    positional_args = [
        p
        for p in inspect.signature(backprop).parameters.values()
        if p.default == inspect.Parameter.empty
    ]
    if len(positional_args) == 3:
        with pytest.raises(ValueError):
            backprop(
                ops.xp.zeros(10, dtype=dtype),
                ops.xp.zeros(5, dtype=dtype),
                ops.xp.zeros(10, dtype=dtype),
            )
        with pytest.raises(ValueError):
            backprop(
                ops.xp.zeros(10, dtype=dtype),
                ops.xp.zeros(10, dtype=dtype),
                ops.xp.zeros(5, dtype=dtype),
            )
    else:
        with pytest.raises(ValueError):
            backprop(
                ops.xp.arange(-10, 10, dtype=dtype),
                ops.xp.arange(5, -5, -1, dtype=dtype),
            )


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_relu_k(ops, X):
    X = ops.asarray(X)
    Y = ops.relu_k(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()
    assert (Y >= 0).sum() == Y.size
    assert (Y <= 6.0).sum() == Y.size


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_swish(ops, X):
    X = ops.asarray(X)
    Y = ops.swish(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_hard_sigmoid(ops, X):
    X = ops.asarray(X)
    Y = ops.hard_sigmoid(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()
    assert (Y >= 0).sum() == Y.size
    assert (Y <= 1.0).sum() == Y.size


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_hard_tanh(ops, X):
    X = ops.asarray(X)
    Y = ops.hard_tanh(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()
    assert (Y >= -1.0).sum() == Y.size
    assert (Y <= 1.0).sum() == Y.size


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_hard_swish(ops, X):
    X = ops.asarray(X)
    Y = ops.hard_swish(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_hard_swish_mobilenet(ops, X):
    X = ops.asarray(X)
    Y = ops.hard_swish_mobilenet(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_gelu_approx(ops, X):
    X = ops.asarray(X)
    Y = ops.gelu_approx(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_dish(ops, X):
    X = ops.asarray(X)
    Y = ops.dish(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_gelu(ops, X):
    X = ops.asarray(X)
    Y = ops.gelu(X)
    assert Y.shape == X.shape
    assert not ops.xp.isnan(Y).any()


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(X=strategies.arrays_BI())
def test_backprop_mish(ops, X):
    X = ops.asarray(X)
    # Test zero gradients result in 0 dX
    zeros = ops.alloc(X.shape)
    dX = ops.backprop_mish(zeros, X)
    assert dX.shape == X.shape
    assert (dX == 0).all()


def get_lstm_args(depth, dirs, nO, batch_size, nI, draw=None):

    if dirs == 1:
        n_params = (nO * 4) * nI + nO * 4 + nO * 4 * nO + nO * 4
        for _ in range(1, depth):
            n_params += nO * 4 * nO + nO * 4 + nO * 4 * nO + nO * 4
    else:
        n_params = (nO * 2) * nI + nO * 2 + nO * 2 * (nO // 2) + nO * 2
        for _ in range(1, depth):
            n_params += nO * 2 * nO + nO * 2 + nO * 2 * (nO // 2) + nO * 2
        n_params *= 2
    lstm = LSTM(nO, nI, depth=depth, bi=dirs >= 2).initialize()
    assert lstm.get_param("LSTM").size == n_params
    if draw:
        params = draw(ndarrays_of_shape(n_params))
        # For some reason this is crashing hypothesis?
        # size_at_t = draw(ndarrays_of_shape(shape=(batch_size,), lo=1, dtype="int32"))
        size_at_t = numpy.ones(shape=(batch_size,), dtype="int32")
        X = draw(ndarrays_of_shape((int(size_at_t.sum()), nI)))
    else:
        params = numpy.ones((n_params,), dtype="f")
        size_at_t = numpy.ones(shape=(batch_size,), dtype="int32")
        X = numpy.zeros(((int(size_at_t.sum()), nI)))
    H0 = numpy.zeros((depth, dirs, nO // dirs))
    C0 = numpy.zeros((depth, dirs, nO // dirs))
    return (params, H0, C0, X, size_at_t)


@composite
def draw_lstm_args(draw):
    depth = draw(integers(1, 4))
    dirs = draw(integers(1, 2))
    nO = draw(integers(1, 16)) * dirs
    batch_size = draw(integers(1, 6))
    nI = draw(integers(1, 16))
    return get_lstm_args(depth, dirs, nO, batch_size, nI, draw=draw)


@pytest.mark.parametrize("ops", XP_OPS)
@pytest.mark.parametrize(
    "depth,dirs,nO,batch_size,nI",
    [
        (1, 1, 1, 1, 1),
        (1, 1, 2, 1, 1),
        (1, 1, 2, 1, 2),
        (2, 1, 1, 1, 1),
        (2, 1, 2, 2, 2),
        (1, 2, 2, 1, 1),
        (2, 2, 2, 2, 2),
    ],
)
def test_lstm_forward_training(ops, depth, dirs, nO, batch_size, nI):
    reference_ops = Ops()
    params, H0, C0, X, size_at_t = get_lstm_args(depth, dirs, nO, batch_size, nI)
    reference = reference_ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    Y, fwd_state = ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    assert_allclose(fwd_state[2], reference[1][2], atol=1e-4, rtol=1e-3)
    assert_allclose(fwd_state[1], reference[1][1], atol=1e-4, rtol=1e-3)
    assert_allclose(Y, reference[0], atol=1e-4, rtol=1e-3)


@pytest.mark.skipif(platform.machine() == "aarch64", reason="Flaky, skip temporarily")
@pytest.mark.parametrize("ops", XP_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(args=draw_lstm_args())
def test_lstm_forward_training_fuzz(ops, args):
    params, H0, C0, X, size_at_t = args
    reference_ops = Ops()
    reference = reference_ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    Y, fwd_state = ops.lstm_forward_training(params, H0, C0, X, size_at_t)
    assert_allclose(fwd_state[2], reference[1][2], atol=1e-4, rtol=1e-3)
    assert_allclose(fwd_state[1], reference[1][1], atol=1e-4, rtol=1e-3)
    assert_allclose(Y, reference[0], atol=1e-4, rtol=1e-3)


def test_get_ops():
    assert isinstance(get_ops("numpy"), NumpyOps)
    assert isinstance(get_ops("cupy"), CupyOps)
    # If Apple ops are available, "cpu" should return AppleOps or
    # NumpyOps otherwise.
    try:
        from thinc.backends.apple_ops import AppleOps

        assert isinstance(get_ops("cpu"), AppleOps)
    except ImportError:
        assert isinstance(get_ops("cpu"), NumpyOps)
    # If BigEndian ops are available, "cpu" should return BigEndianOps or
    # NumpyOps otherwise.
    try:
        from thinc_bigendian_ops import BigEndianOps

        assert isinstance(get_ops("cpu"), BigEndianOps)
    except ImportError:
        assert isinstance(get_ops("cpu"), NumpyOps)
    with pytest.raises(ValueError):
        get_ops("blah")
    ops = Ops(numpy)
    assert ops.xp == numpy


def test_use_ops():
    class_ops = get_current_ops()
    with use_ops("numpy"):
        new_ops = get_current_ops()
        assert new_ops.name == "numpy"
    with use_ops("cupy"):
        new_ops = get_current_ops()
        assert new_ops.name == "cupy"
    new_ops = get_current_ops()
    assert class_ops.name == new_ops.name


def test_minibatch():
    fix_random_seed(0)
    ops = get_current_ops()
    items = [1, 2, 3, 4, 5, 6]
    batches = ops.minibatch(3, items)
    assert list(batches) == [[1, 2, 3], [4, 5, 6]]
    batches = ops.minibatch((i for i in (3, 2, 1)), items)
    assert list(batches) == [[1, 2, 3], [4, 5], [6]]
    batches = list(ops.minibatch(3, numpy.asarray(items)))
    assert isinstance(batches[0], numpy.ndarray)
    assert numpy.array_equal(batches[0], numpy.asarray([1, 2, 3]))
    assert numpy.array_equal(batches[1], numpy.asarray([4, 5, 6]))
    batches = list(ops.minibatch((i for i in (3, 2, 1)), items, shuffle=True))
    assert batches != [[1, 2, 3], [4, 5], [6]]
    assert len(batches[0]) == 3
    assert len(batches[1]) == 2
    assert len(batches[2]) == 1
    with pytest.raises(ValueError):
        ops.minibatch(10, (i for i in range(100)))
    with pytest.raises(ValueError):
        ops.minibatch(10, True)


def test_multibatch():
    fix_random_seed(0)
    ops = get_current_ops()
    arr1 = numpy.asarray([1, 2, 3, 4])
    arr2 = numpy.asarray([5, 6, 7, 8])
    batches = list(ops.multibatch(2, arr1, arr2))
    assert numpy.concatenate(batches).tolist() == [[1, 2], [5, 6], [3, 4], [7, 8]]
    batches = list(ops.multibatch(2, arr1, arr2, shuffle=True))
    assert len(batches) == 2
    assert len(batches[0]) == 2
    assert len(batches[1]) == 2
    batches = list(ops.multibatch(2, [1, 2, 3, 4], [5, 6, 7, 8]))
    assert batches == [[[1, 2], [5, 6]], [[3, 4], [7, 8]]]
    with pytest.raises(ValueError):
        ops.multibatch(10, (i for i in range(100)), (i for i in range(100)))
    with pytest.raises(ValueError):
        ops.multibatch(10, arr1, (i for i in range(100)), arr2)


def test_ngrams():
    ops = get_current_ops()
    arr1 = numpy.asarray([1, 2, 3, 4, 5], dtype=numpy.uint64)
    for n in range(1, 10):
        assert len(ops.ngrams(n, arr1)) == max(0, arr1.shape[0] - (n - 1))
    assert len(ops.ngrams(-1, arr1)) == 0
    assert len(ops.ngrams(arr1.shape[0] + 1, arr1)) == 0


@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.skipif(torch_version < Version("1.9.0"), reason="needs PyTorch 1.9.0")
@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("dtype", ["float32", "float64"])
@pytest.mark.parametrize("torch_func", TORCH_FUNCS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(
    x=strategies.floats(min_value=-30, max_value=30),
    dY=strategies.floats(min_value=-1, max_value=1),
)
def test_compare_activations_to_torch(ops, dtype, x, dY, torch_func):
    import torch

    func_name, pytorch_func = torch_func
    forward = getattr(ops, func_name)
    backward = getattr(ops, "backprop_" + func_name)
    # The tolerance of isclose is set to 1e-06 instead of
    # the default 1e-08 due to the GELU
    x_thinc = ops.asarray([x], dtype=dtype)
    x_torch = xp2torch(x_thinc, requires_grad=True)
    y = pytorch_func(x_torch)
    y_thinc = forward(x_thinc)
    y.backward()
    assert x_thinc.dtype == y_thinc.dtype
    assert y_thinc is not x_thinc
    y_think_inplace = forward(x_thinc, inplace=True)
    assert y_think_inplace is x_thinc
    assert ops.xp.isclose(y_thinc, y_think_inplace, atol=1e-06)
    assert ops.xp.isclose(y_thinc, y.detach(), atol=1e-05)
    x_thinc = ops.asarray([x], dtype=dtype)
    dY_thinc = ops.asarray([dY], dtype=dtype)
    dY_thinc_inplace = dY_thinc.copy()

    s = inspect.signature(backward)
    params = {p for p in s.parameters if p in ["dY", "X", "Y"]}

    if params == {"dY", "X", "Y"}:
        dx_thinc = backward(dY_thinc, Y=y_thinc, X=x_thinc)
        assert dx_thinc.dtype == x_thinc.dtype
        assert dx_thinc is not dY_thinc
        dx_thinc_inplace = backward(
            dY=dY_thinc_inplace, Y=y_thinc, X=x_thinc, inplace=True
        )
        assert dx_thinc_inplace is dY_thinc_inplace
        assert ops.xp.isclose(dx_thinc, dx_thinc_inplace)
        assert ops.xp.isclose(x_torch.grad.item() * dY, float(dx_thinc), atol=1e-06)
    elif params == {"Y", "dY"}:
        dx_thinc = backward(dY_thinc, Y=y_thinc)
        assert dx_thinc.dtype == x_thinc.dtype
        assert ops.xp.isclose(
            dx_thinc,
            backward(dY=dY_thinc_inplace, Y=y_thinc, inplace=True),
        )
        assert ops.xp.isclose(x_torch.grad.item() * dY, float(dx_thinc), atol=1e-06)
    elif params == {"dY", "X"}:
        dx_thinc = backward(dY_thinc, X=x_thinc)
        assert dx_thinc.dtype == x_thinc.dtype
        assert ops.xp.isclose(
            dx_thinc, backward(dY=dY_thinc_inplace, X=x_thinc, inplace=True)
        )
        assert ops.xp.isclose(
            x_torch.grad.item() * dY, float(backward(dY_thinc, X=x_thinc)), atol=1e-06
        )
    else:
        raise NotImplementedError(
            f"No PyTorch comparison implemented for parameter set: {params}"
        )


@pytest.mark.parametrize("ops", ALL_OPS)
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(x=strategies.floats(min_value=-10, max_value=10))
def test_clipped_linear(ops, x):
    x_thinc = ops.xp.asarray([x])
    assert ops.xp.isclose(ops.clipped_linear(x_thinc, max_val=6.0), ops.relu_k(x_thinc))
    assert ops.xp.isclose(
        ops.backprop_clipped_linear(ops.asarray1f([1.0]), x_thinc, max_val=6.0),
        ops.backprop_relu_k(ops.asarray1f([1.0]), x_thinc),
    )
    assert ops.xp.isclose(
        ops.clipped_linear(x_thinc, slope=0.2, offset=0.5), ops.hard_sigmoid(x_thinc)
    )
    assert ops.xp.isclose(
        ops.backprop_clipped_linear(
            ops.asarray1f([1.0]), x_thinc, slope=0.2, offset=0.5
        ),
        ops.backprop_hard_sigmoid(ops.asarray1f([1.0]), x_thinc),
    )


@pytest.mark.parametrize("ops", ALL_OPS)
@pytest.mark.parametrize("byte_order", (">", "<", "=", "|"))
@settings(max_examples=MAX_EXAMPLES, deadline=None)
@given(x=strategies.floats(min_value=-10, max_value=10))
def test_to_numpy_byteorder(ops, byte_order, x):
    x = ops.xp.asarray([x])
    y = ops.to_numpy(x, byte_order=byte_order)
    assert numpy.array_equal(ops.to_numpy(x), ops.to_numpy(y))
    if byte_order in (">", "<"):
        # hack from: https://stackoverflow.com/a/49740663
        assert y.dtype.newbyteorder("S").newbyteorder("S").byteorder == byte_order
    else:
        assert x.dtype.byteorder == y.dtype.byteorder


@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/CuPy")
def test_custom_kernel_compilation():
    for kernel_name in KERNELS_LIST:
        compiled_kernel = KERNELS.get_function(kernel_name)
        assert compiled_kernel is not None

    assert compile_mmh() is not None


@pytest.mark.parametrize("ops", ALL_OPS)
def test_asarray_from_list_uint64(ops):
    # list contains int values both above and below int64.max
    uint64_list = [16, 11648197037703959513]
    assert uint64_list == list(ops.asarray(uint64_list, dtype="uint64"))