File: test_combinators.py

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (298 lines) | stat: -rw-r--r-- 7,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy
import pytest
from numpy.testing import assert_allclose

from thinc.api import (
    Dropout,
    Linear,
    Model,
    NumpyOps,
    add,
    clone,
    concatenate,
    map_list,
    noop,
)
from thinc.layers import chain, tuplify


@pytest.fixture(params=[1, 2, 9])
def nB(request):
    return request.param


@pytest.fixture(params=[1, 6])
def nI(request):
    return request.param


@pytest.fixture(params=[1, 5, 3])
def nH(request):
    return request.param


@pytest.fixture(params=[1, 2, 7, 9])
def nO(request):
    return request.param


@pytest.fixture
def model1(nH, nI):
    return Linear(nH, nI)


@pytest.fixture
def model2(nO, nH):
    return Linear(nO, nH)


@pytest.fixture
def model3(nO):
    return Linear(nO, nO)


def test_tuplify_zero():
    with pytest.raises(TypeError):
        tuplify()


def test_tuplify_one(model1):
    with pytest.raises(TypeError):
        tuplify(model1)


def test_tuplify_two(model1, model2):
    model = tuplify(model1, model2)
    assert len(model.layers) == 2


def test_tuplify_operator_two(model1, model2):
    with Model.define_operators({"&": tuplify}):
        model = model1 & model2
        assert len(model.layers) == 2


def test_tuplify_dulicates_input():
    model = tuplify(noop(), noop())
    ones = numpy.ones([10])
    out = model.predict(ones)
    assert out == (ones, ones)


def test_tuplify_initialize(nI, nO):
    linear = Linear(nO)
    model = tuplify(linear, linear)
    ones = numpy.ones((1, nI), dtype="float")
    model.initialize(X=ones)


def test_tuplify_three(model1, model2, model3):
    model = tuplify(model1, model2, model3)
    assert len(model.layers) == 3


def test_tuplify_operator_three(model1, model2, model3):
    # Previously we 'flattened' these nested calls. We might opt to do so
    # again, especially for the operators.
    with Model.define_operators({"&": tuplify}):
        model = model1 & model2 & model3
        assert len(model.layers) == 2
        assert len(model.layers[0].layers) == 2


def test_chain_zero():
    with pytest.raises(TypeError):
        chain()


def test_chain_one(model1):
    with pytest.raises(TypeError):
        chain(model1)


def test_chain_two(model1, model2):
    model = chain(model1, model2)
    assert len(model.layers) == 2


def test_chain_operator_two(model1, model2):
    with Model.define_operators({">>": chain}):
        model = model1 >> model2
        assert len(model.layers) == 2


def test_chain_three(model1, model2, model3):
    model = chain(model1, model2, model3)
    assert len(model.layers) == 3


def test_chain_operator_three(model1, model2, model3):
    # Previously we 'flattened' these nested calls. We might opt to do so
    # again, especially for the operators.
    with Model.define_operators({">>": chain}):
        model = model1 >> model2 >> model3
        assert len(model.layers) == 2
        assert len(model.layers[0].layers) == 2


def test_chain_right_branch(model1, model2, model3):
    # Previously we 'flattened' these nested calls. We might opt to do so
    # again, especially for the operators.
    merge1 = chain(model1, model2)
    merge2 = chain(merge1, model3)
    assert len(merge1.layers) == 2
    assert len(merge2.layers) == 2


@pytest.mark.parametrize("ops", [NumpyOps(), NumpyOps(use_blis=True)])
def test_chain(ops):
    data = numpy.asarray([[1, 2, 3, 4]], dtype="f")
    model = chain(Linear(1), Dropout(), Linear(1))
    model.ops = ops
    model.initialize(data, data)
    Y, backprop = model(data, is_train=True)
    backprop(Y)
    # Layers with and without nO/nI
    model = chain(Linear(1), Dropout(), Linear(1, 1))
    model.initialize(data, data)
    # Setting dim on model
    model = chain(Linear(1), Dropout(), Linear(1))
    model.set_dim("nO", 1)
    model.initialize(data, None)
    model = chain(Linear(1, 1), Dropout(), Linear(1, 1))
    model.set_dim("nI", 1)
    model.initialize(None, data)
    # Not enough arguments
    with pytest.raises(TypeError):
        chain(Linear())
    with pytest.raises(TypeError):
        chain()


def test_concatenate_one(model1):
    model = concatenate(model1)
    assert isinstance(model, Model)


def test_concatenate_two(model1, model2):
    model = concatenate(model1, model2)
    assert len(model.layers) == 2


def test_concatenate_operator_two(model1, model2):
    with Model.define_operators({"|": concatenate}):
        model = model1 | model2
        assert len(model.layers) == 2


def test_concatenate_three(model1, model2, model3):
    model = concatenate(model1, model2, model3)
    assert len(model.layers) == 3


def test_concatenate_operator_three(model1, model2, model3):
    with Model.define_operators({"|": concatenate}):
        model = model1 | model2 | model3
        assert len(model.layers) == 3


def test_clone_changes_predictions(nH, nI):
    model1 = Linear(nH)
    model = clone(model1, 10)
    ones = numpy.ones((10, nI), dtype="f")
    model.initialize(X=ones)
    output_from_cloned = model.predict(ones)
    output_from_orig = model1.predict(ones)
    assert output_from_cloned.sum() != output_from_orig.sum()


def test_clone_gives_distinct_ids(nH, nI):
    model = clone(Linear(nH), 5)
    assert len(model.layers) == 5
    seen_ids = set()
    for node in model.walk():
        assert node.id not in seen_ids
        seen_ids.add(node.id)
    assert len(seen_ids) == 6


def test_clone_noop():
    model = clone(Linear(), 0)
    assert len(model.layers) == 0
    assert model.name == "noop"


def test_concatenate_noop():
    model = concatenate()
    assert len(model.layers) == 0
    assert model.name == "noop"


def test_noop():
    data = numpy.asarray([1, 2, 3], dtype="f")
    model = noop(Linear(), Linear())
    model.initialize(data, data)
    Y, backprop = model(data, is_train=True)
    assert numpy.array_equal(Y, data)
    dX = backprop(Y)
    assert numpy.array_equal(dX, data)


def test_add():
    data = numpy.asarray([[1, 2, 3, 4]], dtype="f")
    model = add(Linear(), Linear())
    model.initialize(data, data)
    Y, backprop = model(data, is_train=True)
    Y2 = sum(layer.predict(data) for layer in model.layers)
    assert numpy.array_equal(Y, Y2)
    dX = backprop(Y)
    assert dX.shape == data.shape
    # Test that nesting works
    model2 = add(model, Linear())
    assert len(model2.layers) == 3
    model.initialize(data, data)
    Y = model2.predict(data)
    Y2 = sum(layer.predict(data) for layer in model2.layers)
    assert numpy.array_equal(Y, Y2)


def test_add_edge_cases():
    data = numpy.asarray([[1, 2, 3, 4]], dtype="f")
    with pytest.raises(TypeError):
        add()
    model = add(Linear(), Linear())
    model._layers = []
    Y, backprop = model(data, is_train=True)
    assert numpy.array_equal(data, Y)
    dX = backprop(Y)
    assert numpy.array_equal(dX, data)


def test_concatenate():
    data = numpy.asarray([[1, 2, 3], [4, 5, 6]], dtype="f")
    model = concatenate(Linear(), Linear())
    model.initialize(data, data)
    Y, backprop = model(data, is_train=True)
    assert Y.shape[1] == sum([layer.predict(data).shape[1] for layer in model.layers])
    dX = backprop(Y)
    assert dX.shape == data.shape


def test_map_list():
    nI = 4
    nO = 9
    Xs = [numpy.zeros((6, nI), dtype="f"), numpy.ones((3, nI), dtype="f")]
    Y_shapes = [(x.shape[0], nO) for x in Xs]
    model = map_list(Linear())
    model.initialize(X=Xs, Y=[numpy.zeros(shape, dtype="f") for shape in Y_shapes])
    Ys, backprop = model(Xs, is_train=True)
    assert isinstance(Ys, list)
    assert len(Ys) == len(Xs)
    layer = model.layers[0]
    for X, Y in zip(Xs, Ys):
        assert_allclose(layer.predict(X), Y)
    dXs = backprop(Ys)
    assert isinstance(dXs, list)
    assert len(dXs) == len(Xs)
    assert dXs[0].shape == Xs[0].shape
    assert dXs[1].shape == Xs[1].shape