1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
from typing import cast
import numpy
import pytest
from thinc.api import (
Adam,
ArgsKwargs,
Model,
MXNetWrapper,
Ops,
get_current_ops,
mxnet2xp,
xp2mxnet,
)
from thinc.compat import has_cupy_gpu, has_mxnet
from thinc.types import Array1d, Array2d, IntsXd
from thinc.util import to_categorical
from ..util import check_input_converters, make_tempdir
@pytest.fixture
def n_hidden() -> int:
return 12
@pytest.fixture
def input_size() -> int:
return 784
@pytest.fixture
def n_classes() -> int:
return 10
@pytest.fixture
def answer() -> int:
return 1
@pytest.fixture
def X(input_size: int) -> Array2d:
ops: Ops = get_current_ops()
return cast(Array2d, ops.alloc(shape=(1, input_size)))
@pytest.fixture
def Y(answer: int, n_classes: int) -> Array2d:
ops: Ops = get_current_ops()
return cast(
Array2d,
to_categorical(cast(IntsXd, ops.asarray([answer])), n_classes=n_classes),
)
@pytest.fixture
def mx_model(n_hidden: int, input_size: int, X: Array2d):
import mxnet as mx
mx_model = mx.gluon.nn.Sequential()
mx_model.add(
mx.gluon.nn.Dense(n_hidden),
mx.gluon.nn.LayerNorm(),
mx.gluon.nn.Dense(n_hidden, activation="relu"),
mx.gluon.nn.LayerNorm(),
mx.gluon.nn.Dense(10, activation="softrelu"),
)
mx_model.initialize()
return mx_model
@pytest.fixture
def model(mx_model) -> Model[Array2d, Array2d]:
return MXNetWrapper(mx_model)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_roundtrip_conversion():
import mxnet as mx
xp_tensor = numpy.zeros((2, 3), dtype="f")
mx_tensor = xp2mxnet(xp_tensor)
assert isinstance(mx_tensor, mx.nd.NDArray)
new_xp_tensor = mxnet2xp(mx_tensor)
assert numpy.array_equal(xp_tensor, new_xp_tensor)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_gluon_sequential():
import mxnet as mx
mx_model = mx.gluon.nn.Sequential()
mx_model.add(mx.gluon.nn.Dense(12))
wrapped = MXNetWrapper(mx_model)
assert isinstance(wrapped, Model)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_built_model(
model: Model[Array2d, Array2d], X: Array2d, Y: Array1d
):
# built models are validated more and can perform useful operations:
assert model.predict(X) is not None
# They can de/serialized
assert model.from_bytes(model.to_bytes()) is not None
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_predict(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_train_overfits(
model: Model[Array2d, Array2d], X: Array2d, Y: Array1d, answer: int
):
optimizer = Adam()
for i in range(100):
guesses, backprop = model(X, is_train=True)
d_guesses = (guesses - Y) / guesses.shape[0]
backprop(d_guesses)
model.finish_update(optimizer)
predicted = model.predict(X).argmax()
assert predicted == answer
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_can_copy_model(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
copy: Model[Array2d, Array2d] = model.copy()
assert copy is not None
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_bytes(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
# And can be serialized
model_bytes = model.to_bytes()
assert model_bytes is not None
model.from_bytes(model_bytes)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_from_disk(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
with make_tempdir() as tmp_path:
model_file = tmp_path / "model.bytes"
model.to_disk(model_file)
another_model = model.from_disk(model_file)
assert another_model is not None
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_from_bytes(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
model_bytes = model.to_bytes()
another_model = model.from_bytes(model_bytes)
assert another_model is not None
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_cpu(mx_model, X: Array2d):
model = MXNetWrapper(mx_model)
model.predict(X)
model.to_cpu()
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/cupy")
def test_mxnet_wrapper_to_gpu(model: Model[Array2d, Array2d], X: Array2d):
model.predict(X)
model.to_gpu(0)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
@pytest.mark.parametrize(
"data,n_args,kwargs_keys",
[
# fmt: off
(numpy.zeros((2, 3), dtype="f"), 1, []),
([numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")], 2, []),
((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), 2, []),
({"a": numpy.zeros((2, 3), dtype="f"), "b": numpy.zeros((2, 3), dtype="f")}, 0, ["a", "b"]),
(ArgsKwargs((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), {"c": numpy.zeros((2, 3), dtype="f")}), 2, ["c"]),
# fmt: on
],
)
def test_mxnet_wrapper_convert_inputs(data, n_args, kwargs_keys):
import mxnet as mx
mx_model = mx.gluon.nn.Sequential()
mx_model.add(mx.gluon.nn.Dense(12))
mx_model.initialize()
model = MXNetWrapper(mx_model)
convert_inputs = model.attrs["convert_inputs"]
Y, backprop = convert_inputs(model, data, is_train=True)
check_input_converters(Y, backprop, data, n_args, kwargs_keys, mx.nd.NDArray)
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_thinc_model_subclass(mx_model):
class CustomModel(Model):
def fn(self) -> int:
return 1337
model = MXNetWrapper(mx_model, model_class=CustomModel)
assert isinstance(model, CustomModel)
assert model.fn() == 1337
@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_thinc_set_model_name(mx_model):
model = MXNetWrapper(mx_model, model_name="cool")
assert model.name == "cool"
|