File: test_mxnet_wrapper.py

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (216 lines) | stat: -rw-r--r-- 6,292 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from typing import cast

import numpy
import pytest

from thinc.api import (
    Adam,
    ArgsKwargs,
    Model,
    MXNetWrapper,
    Ops,
    get_current_ops,
    mxnet2xp,
    xp2mxnet,
)
from thinc.compat import has_cupy_gpu, has_mxnet
from thinc.types import Array1d, Array2d, IntsXd
from thinc.util import to_categorical

from ..util import check_input_converters, make_tempdir


@pytest.fixture
def n_hidden() -> int:
    return 12


@pytest.fixture
def input_size() -> int:
    return 784


@pytest.fixture
def n_classes() -> int:
    return 10


@pytest.fixture
def answer() -> int:
    return 1


@pytest.fixture
def X(input_size: int) -> Array2d:
    ops: Ops = get_current_ops()
    return cast(Array2d, ops.alloc(shape=(1, input_size)))


@pytest.fixture
def Y(answer: int, n_classes: int) -> Array2d:
    ops: Ops = get_current_ops()
    return cast(
        Array2d,
        to_categorical(cast(IntsXd, ops.asarray([answer])), n_classes=n_classes),
    )


@pytest.fixture
def mx_model(n_hidden: int, input_size: int, X: Array2d):
    import mxnet as mx

    mx_model = mx.gluon.nn.Sequential()
    mx_model.add(
        mx.gluon.nn.Dense(n_hidden),
        mx.gluon.nn.LayerNorm(),
        mx.gluon.nn.Dense(n_hidden, activation="relu"),
        mx.gluon.nn.LayerNorm(),
        mx.gluon.nn.Dense(10, activation="softrelu"),
    )
    mx_model.initialize()
    return mx_model


@pytest.fixture
def model(mx_model) -> Model[Array2d, Array2d]:
    return MXNetWrapper(mx_model)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_roundtrip_conversion():
    import mxnet as mx

    xp_tensor = numpy.zeros((2, 3), dtype="f")
    mx_tensor = xp2mxnet(xp_tensor)
    assert isinstance(mx_tensor, mx.nd.NDArray)
    new_xp_tensor = mxnet2xp(mx_tensor)
    assert numpy.array_equal(xp_tensor, new_xp_tensor)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_gluon_sequential():
    import mxnet as mx

    mx_model = mx.gluon.nn.Sequential()
    mx_model.add(mx.gluon.nn.Dense(12))
    wrapped = MXNetWrapper(mx_model)
    assert isinstance(wrapped, Model)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_built_model(
    model: Model[Array2d, Array2d], X: Array2d, Y: Array1d
):
    # built models are validated more and can perform useful operations:
    assert model.predict(X) is not None
    # They can de/serialized
    assert model.from_bytes(model.to_bytes()) is not None


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_predict(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_train_overfits(
    model: Model[Array2d, Array2d], X: Array2d, Y: Array1d, answer: int
):
    optimizer = Adam()
    for i in range(100):
        guesses, backprop = model(X, is_train=True)
        d_guesses = (guesses - Y) / guesses.shape[0]
        backprop(d_guesses)
        model.finish_update(optimizer)
    predicted = model.predict(X).argmax()
    assert predicted == answer


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_can_copy_model(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)
    copy: Model[Array2d, Array2d] = model.copy()
    assert copy is not None


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_bytes(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)
    # And can be serialized
    model_bytes = model.to_bytes()
    assert model_bytes is not None
    model.from_bytes(model_bytes)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_from_disk(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)
    with make_tempdir() as tmp_path:
        model_file = tmp_path / "model.bytes"
        model.to_disk(model_file)
        another_model = model.from_disk(model_file)
        assert another_model is not None


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_from_bytes(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)
    model_bytes = model.to_bytes()
    another_model = model.from_bytes(model_bytes)
    assert another_model is not None


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_to_cpu(mx_model, X: Array2d):
    model = MXNetWrapper(mx_model)
    model.predict(X)
    model.to_cpu()


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/cupy")
def test_mxnet_wrapper_to_gpu(model: Model[Array2d, Array2d], X: Array2d):
    model.predict(X)
    model.to_gpu(0)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
@pytest.mark.parametrize(
    "data,n_args,kwargs_keys",
    [
        # fmt: off
        (numpy.zeros((2, 3), dtype="f"), 1, []),
        ([numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")], 2, []),
        ((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), 2, []),
        ({"a": numpy.zeros((2, 3), dtype="f"), "b": numpy.zeros((2, 3), dtype="f")}, 0, ["a", "b"]),
        (ArgsKwargs((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), {"c": numpy.zeros((2, 3), dtype="f")}), 2, ["c"]),
        # fmt: on
    ],
)
def test_mxnet_wrapper_convert_inputs(data, n_args, kwargs_keys):
    import mxnet as mx

    mx_model = mx.gluon.nn.Sequential()
    mx_model.add(mx.gluon.nn.Dense(12))
    mx_model.initialize()
    model = MXNetWrapper(mx_model)
    convert_inputs = model.attrs["convert_inputs"]
    Y, backprop = convert_inputs(model, data, is_train=True)
    check_input_converters(Y, backprop, data, n_args, kwargs_keys, mx.nd.NDArray)


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_thinc_model_subclass(mx_model):
    class CustomModel(Model):
        def fn(self) -> int:
            return 1337

    model = MXNetWrapper(mx_model, model_class=CustomModel)
    assert isinstance(model, CustomModel)
    assert model.fn() == 1337


@pytest.mark.skipif(not has_mxnet, reason="needs MXNet")
def test_mxnet_wrapper_thinc_set_model_name(mx_model):
    model = MXNetWrapper(mx_model, model_name="cool")
    assert model.name == "cool"