1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
import numpy
import pytest
from thinc.api import (
SGD,
ArgsKwargs,
CupyOps,
Linear,
MPSOps,
NumpyOps,
PyTorchWrapper,
PyTorchWrapper_v2,
PyTorchWrapper_v3,
Relu,
chain,
get_current_ops,
torch2xp,
use_ops,
xp2torch,
)
from thinc.backends import context_pools
from thinc.compat import has_cupy_gpu, has_torch, has_torch_amp, has_torch_mps_gpu
from thinc.layers.pytorchwrapper import PyTorchWrapper_v3
from thinc.shims.pytorch import (
default_deserialize_torch_model,
default_serialize_torch_model,
)
from thinc.shims.pytorch_grad_scaler import PyTorchGradScaler
from thinc.util import get_torch_default_device
from ..util import check_input_converters, make_tempdir
XP_OPS = [NumpyOps()]
if has_cupy_gpu:
XP_OPS.append(CupyOps())
if has_torch_mps_gpu:
XP_OPS.append(MPSOps())
if has_torch_amp:
TORCH_MIXED_PRECISION = [False, True]
else:
TORCH_MIXED_PRECISION = [False]
XP_OPS_MIXED = [
(ops, mixed)
for ops in XP_OPS
for mixed in TORCH_MIXED_PRECISION
if not mixed or isinstance(ops, CupyOps)
]
def check_learns_zero_output(model, sgd, X, Y):
"""Check we can learn to output a zero vector"""
Yh, get_dX = model.begin_update(X)
dYh = (Yh - Y) / Yh.shape[0]
dX = get_dX(dYh)
model.finish_update(sgd)
prev = numpy.abs(Yh.sum())
for i in range(100):
Yh, get_dX = model.begin_update(X)
total = numpy.abs(Yh.sum())
dX = get_dX(Yh - Y) # noqa: F841
model.finish_update(sgd)
assert total < prev
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize("nN,nI,nO", [(2, 3, 4)])
def test_pytorch_unwrapped(nN, nI, nO):
model = Linear(nO, nI).initialize()
X = numpy.zeros((nN, nI), dtype="f")
X += numpy.random.uniform(size=X.size).reshape(X.shape)
sgd = SGD(0.01)
Y = numpy.zeros((nN, nO), dtype="f")
check_learns_zero_output(model, sgd, X, Y)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize("nN,nI,nO", [(2, 3, 4)])
def test_pytorch_wrapper(nN, nI, nO):
import torch.nn
model = PyTorchWrapper(torch.nn.Linear(nI, nO)).initialize()
sgd = SGD(0.001)
X = numpy.zeros((nN, nI), dtype="f")
X += numpy.random.uniform(size=X.size).reshape(X.shape)
Y = numpy.zeros((nN, nO), dtype="f")
Yh, get_dX = model.begin_update(X)
assert isinstance(Yh, numpy.ndarray)
assert Yh.shape == (nN, nO)
dYh = (Yh - Y) / Yh.shape[0]
dX = get_dX(dYh)
model.finish_update(sgd)
assert dX.shape == (nN, nI)
check_learns_zero_output(model, sgd, X, Y)
assert isinstance(model.predict(X), numpy.ndarray)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize("ops_mixed", XP_OPS_MIXED)
@pytest.mark.parametrize("nN,nI,nO", [(2, 3, 4)])
def test_pytorch_wrapper_thinc_input(ops_mixed, nN, nI, nO):
import torch.nn
ops, mixed_precision = ops_mixed
with use_ops(ops.name):
ops = get_current_ops()
pytorch_layer = torch.nn.Linear(nO, nO)
# Initialize with large weights to trigger overflow of FP16 in
# mixed-precision training.
torch.nn.init.uniform_(pytorch_layer.weight, 9.0, 11.0)
device = get_torch_default_device()
model = chain(
Relu(),
PyTorchWrapper_v2(
pytorch_layer.to(device),
mixed_precision=mixed_precision,
grad_scaler=PyTorchGradScaler(
enabled=mixed_precision, init_scale=2.0**16
),
).initialize(),
)
# pytorch allocator is set in PyTorchShim
if isinstance(ops, CupyOps):
assert "pytorch" in context_pools.get()
sgd = SGD(0.001)
X = ops.xp.zeros((nN, nI), dtype="f")
X += ops.xp.random.uniform(size=X.size).reshape(X.shape)
Y = ops.xp.zeros((nN, nO), dtype="f")
model.initialize(X, Y)
Yh, get_dX = model.begin_update(X)
assert isinstance(Yh, ops.xp.ndarray)
assert Yh.shape == (nN, nO)
dYh = (Yh - Y) / Yh.shape[0]
dX = get_dX(dYh)
model.finish_update(sgd)
assert dX.shape == (nN, nI)
check_learns_zero_output(model, sgd, X, Y)
assert isinstance(model.predict(X), ops.xp.ndarray)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
def test_pytorch_roundtrip_conversion():
import torch
xp_tensor = numpy.zeros((2, 3), dtype="f")
torch_tensor = xp2torch(xp_tensor)
assert isinstance(torch_tensor, torch.Tensor)
new_xp_tensor = torch2xp(torch_tensor)
assert numpy.array_equal(xp_tensor, new_xp_tensor)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
def test_pytorch_wrapper_roundtrip():
import torch.nn
model = PyTorchWrapper(torch.nn.Linear(2, 3))
model_bytes = model.to_bytes()
PyTorchWrapper(torch.nn.Linear(2, 3)).from_bytes(model_bytes)
with make_tempdir() as path:
model_path = path / "model"
model.to_disk(model_path)
new_model = PyTorchWrapper(torch.nn.Linear(2, 3)).from_bytes(model_bytes)
new_model.from_disk(model_path)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
@pytest.mark.parametrize(
"data,n_args,kwargs_keys",
[
# fmt: off
(numpy.zeros((2, 3), dtype="f"), 1, []),
([numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")], 2, []),
((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), 2, []),
({"a": numpy.zeros((2, 3), dtype="f"), "b": numpy.zeros((2, 3), dtype="f")}, 0, ["a", "b"]),
(ArgsKwargs((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), {"c": numpy.zeros((2, 3), dtype="f")}), 2, ["c"]),
# fmt: on
],
)
def test_pytorch_convert_inputs(data, n_args, kwargs_keys):
import torch.nn
model = PyTorchWrapper(torch.nn.Linear(3, 4))
convert_inputs = model.attrs["convert_inputs"]
Y, backprop = convert_inputs(model, data, is_train=True)
check_input_converters(Y, backprop, data, n_args, kwargs_keys, torch.Tensor)
@pytest.mark.skipif(not has_torch, reason="needs PyTorch")
def test_pytorch_wrapper_custom_serde():
import torch.nn
def serialize(model):
return default_serialize_torch_model(model)
def deserialize(model, state_bytes, device):
return default_deserialize_torch_model(model, state_bytes, device)
def get_model():
return PyTorchWrapper_v3(
torch.nn.Linear(2, 3),
serialize_model=serialize,
deserialize_model=deserialize,
)
model = get_model()
model_bytes = model.to_bytes()
get_model().from_bytes(model_bytes)
with make_tempdir() as path:
model_path = path / "model"
model.to_disk(model_path)
new_model = get_model().from_bytes(model_bytes)
new_model.from_disk(model_path)
|