File: test_tensorflow_wrapper.py

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (414 lines) | stat: -rw-r--r-- 13,111 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import numpy
import pytest

from thinc.api import (
    Adam,
    ArgsKwargs,
    Linear,
    Model,
    TensorFlowWrapper,
    get_current_ops,
    keras_subclass,
    tensorflow2xp,
    xp2tensorflow,
)
from thinc.compat import has_cupy_gpu, has_tensorflow
from thinc.util import to_categorical

from ..util import check_input_converters, make_tempdir


@pytest.fixture
def n_hidden():
    return 12


@pytest.fixture
def input_size():
    return 784


@pytest.fixture
def n_classes():
    return 10


@pytest.fixture
def answer():
    return 1


@pytest.fixture
def X(input_size):
    ops = get_current_ops()
    return ops.alloc(shape=(1, input_size))


@pytest.fixture
def Y(answer, n_classes):
    ops = get_current_ops()
    return to_categorical(ops.asarray1i([answer]), n_classes=n_classes)


@pytest.fixture
def tf_model(n_hidden, input_size):
    import tensorflow as tf

    tf_model = tf.keras.Sequential(
        [
            tf.keras.layers.Dense(n_hidden, input_shape=(input_size,)),
            tf.keras.layers.LayerNormalization(),
            tf.keras.layers.Dense(n_hidden, activation="relu"),
            tf.keras.layers.LayerNormalization(),
            tf.keras.layers.Dense(10, activation="softmax"),
        ]
    )
    return tf_model


@pytest.fixture
def model(tf_model):
    return TensorFlowWrapper(tf_model)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_roundtrip_conversion():
    import tensorflow as tf

    ops = get_current_ops()
    xp_tensor = ops.alloc2f(2, 3, zeros=True)
    tf_tensor = xp2tensorflow(xp_tensor)
    assert isinstance(tf_tensor, tf.Tensor)
    new_xp_tensor = tensorflow2xp(tf_tensor, ops=ops)
    assert ops.xp.array_equal(xp_tensor, new_xp_tensor)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_construction_requires_keras_model():
    import tensorflow as tf

    keras_model = tf.keras.Sequential([tf.keras.layers.Dense(12, input_shape=(12,))])
    assert isinstance(TensorFlowWrapper(keras_model), Model)
    with pytest.raises(ValueError):
        TensorFlowWrapper(Linear(2, 3))


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_built_model(model, X, Y):
    # built models are validated more and can perform useful operations:
    assert model.predict(X) is not None
    # Can print a keras summary
    assert str(model.shims[0]) != ""
    # They can de/serialized
    assert model.from_bytes(model.to_bytes()) is not None


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_predict(model, X):
    model.predict(X)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_train_overfits(model, X, Y, answer):
    optimizer = Adam()
    ops = get_current_ops()
    for i in range(100):
        guesses, backprop = model(X, is_train=True)
        # Ensure that the tensor is type-compatible with the current backend.
        guesses = ops.asarray(guesses)

        d_guesses = (guesses - Y) / guesses.shape[0]
        backprop(d_guesses)
        model.finish_update(optimizer)
    predicted = model.predict(X).argmax()
    assert predicted == answer


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_accumulate_gradients(model, X, Y, answer):
    import tensorflow as tf

    optimizer = Adam()
    gradients = []
    ops = get_current_ops()
    for i in range(3):
        guesses, backprop = model(X, is_train=True)
        # Ensure that the tensor is type-compatible with the current backend.
        guesses = ops.asarray(guesses)

        d_guesses = (guesses - Y) / guesses.shape[0]
        backprop(d_guesses)
        shim_grads = [tf.identity(var) for var in model.shims[0].gradients]
        gradients.append(shim_grads)

    # Apply the gradients
    model.finish_update(optimizer)
    assert model.shims[0].gradients is None

    # Compare prev/next pairs and ensure their gradients have changed
    for i in range(len(gradients)):
        # Skip the first one
        if i == 0:
            continue
        found_diff = False
        curr_grads = gradients[i]
        prev_grads = gradients[i - 1]
        for curr, prev in zip(curr_grads, prev_grads):
            if (prev != curr).numpy().any():
                found_diff = True
        assert found_diff is True


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_serialize_model_subclass(
    X, Y, input_size, n_classes, answer
):
    import tensorflow as tf

    input_shape = (1, input_size)
    ops = get_current_ops()

    @keras_subclass(
        "foo.v1",
        X=ops.alloc2f(*input_shape),
        Y=to_categorical(ops.asarray1i([1]), n_classes=n_classes),
        input_shape=input_shape,
    )
    class CustomKerasModel(tf.keras.Model):
        def __init__(self, **kwargs):
            super(CustomKerasModel, self).__init__(**kwargs)
            self.in_dense = tf.keras.layers.Dense(
                12, name="in_dense", input_shape=input_shape
            )
            self.out_dense = tf.keras.layers.Dense(
                n_classes, name="out_dense", activation="softmax"
            )

        def call(self, inputs) -> tf.Tensor:
            x = self.in_dense(inputs)
            return self.out_dense(x)

    model = TensorFlowWrapper(CustomKerasModel())
    # Train the model to predict the right single answer
    optimizer = Adam()
    for i in range(50):
        guesses, backprop = model(X, is_train=True)
        # Ensure that the tensor is type-compatible with the current backend.
        guesses = ops.asarray(guesses)

        d_guesses = (guesses - Y) / guesses.shape[0]
        backprop(d_guesses)
        model.finish_update(optimizer)
    predicted = model.predict(X).argmax()
    assert predicted == answer

    # Save then Load the model from bytes
    model.from_bytes(model.to_bytes())

    # The from_bytes model gets the same answer
    assert model.predict(X).argmax() == answer


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_keras_subclass_decorator_compile_args():
    import tensorflow as tf

    class UndecoratedModel(tf.keras.Model):
        def call(self, inputs):
            return inputs

    # Can't wrap an undecorated keras subclass model
    with pytest.raises(ValueError):
        TensorFlowWrapper(UndecoratedModel())

    @keras_subclass(
        "TestModel",
        X=numpy.array([0.0, 0.0]),
        Y=numpy.array([0.5]),
        input_shape=(2,),
        compile_args={"loss": "binary_crossentropy"},
    )
    class TestModel(tf.keras.Model):
        def call(self, inputs):
            return inputs

    model = TensorFlowWrapper(TestModel())
    model = model.from_bytes(model.to_bytes())

    assert model.shims[0]._model.loss == "binary_crossentropy"
    assert isinstance(model, Model)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_keras_subclass_decorator():
    import tensorflow as tf

    class UndecoratedModel(tf.keras.Model):
        def call(self, inputs):
            return inputs

    # Can't wrap an undecorated keras subclass model
    with pytest.raises(ValueError):
        TensorFlowWrapper(UndecoratedModel())

    @keras_subclass(
        "TestModel", X=numpy.array([0.0, 0.0]), Y=numpy.array([0.5]), input_shape=(2,)
    )
    class TestModel(tf.keras.Model):
        def call(self, inputs):
            return inputs

    # Can wrap an decorated keras subclass model
    assert isinstance(TensorFlowWrapper(TestModel()), Model)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_keras_subclass_decorator_capture_args_kwargs(
    X, Y, input_size, n_classes, answer
):
    import tensorflow as tf

    @keras_subclass(
        "TestModel", X=numpy.array([0.0, 0.0]), Y=numpy.array([0.5]), input_shape=(2,)
    )
    class TestModel(tf.keras.Model):
        def __init__(self, custom=False, **kwargs):
            super().__init__(self)
            # This is to force the mode to pass the captured arguments
            # or fail.
            assert custom is True
            assert kwargs.get("other", None) is not None

        def call(self, inputs):
            return inputs

    # Can wrap an decorated keras subclass model
    model = TensorFlowWrapper(TestModel(True, other=1337))

    assert hasattr(model.shims[0]._model, "eg_args")
    args_kwargs = model.shims[0]._model.eg_args
    assert True in args_kwargs.args
    assert "other" in args_kwargs.kwargs

    # Raises an error if the args/kwargs is not serializable
    obj = {}
    obj["key"] = obj
    with pytest.raises(ValueError):
        TensorFlowWrapper(TestModel(True, other=obj))

    # Provides the same arguments when copying a capture model
    model = model.from_bytes(model.to_bytes())


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_can_copy_model(model):
    copy = model.copy()
    assert copy is not None


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_print_summary(model, X):
    summary = str(model.shims[0])
    # Summary includes the layers of our model
    assert "layer_normalization" in summary
    assert "dense" in summary
    # And counts of params
    assert "Total params" in summary
    assert "Trainable params" in summary
    assert "Non-trainable params" in summary


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_to_bytes(model, X):
    # And can be serialized
    model_bytes = model.to_bytes()
    assert model_bytes is not None
    model.from_bytes(model_bytes)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_to_from_disk(model, X, Y, answer):
    with make_tempdir() as tmp_path:
        model_file = tmp_path / "model.h5"
        model.to_disk(model_file)
        another_model = model.from_disk(model_file)
        assert another_model is not None


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_from_bytes(model, X):
    model.predict(X)
    model_bytes = model.to_bytes()
    another_model = model.from_bytes(model_bytes)
    assert another_model is not None


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_use_params(model, X, Y, answer):
    optimizer = Adam()
    ops = get_current_ops()
    with model.use_params(optimizer.averages):
        assert model.predict(X).argmax() is not None
    for i in range(10):
        guesses, backprop = model.begin_update(X)
        # Ensure that the tensor is type-compatible with the current backend.
        guesses = ops.asarray(guesses)

        d_guesses = (guesses - Y) / guesses.shape[0]
        backprop(d_guesses)
        model.finish_update(optimizer)
    with model.use_params(optimizer.averages):
        predicted = model.predict(X).argmax()
    assert predicted == answer


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_to_cpu(tf_model):
    model = TensorFlowWrapper(tf_model)
    model.to_cpu()


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
@pytest.mark.skipif(not has_cupy_gpu, reason="needs GPU/cupy")
def test_tensorflow_wrapper_to_gpu(model, X):
    model.to_gpu(0)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
@pytest.mark.parametrize(
    "data,n_args,kwargs_keys",
    [
        # fmt: off
        (numpy.zeros((2, 3), dtype="f"), 1, []),
        ([numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")], 2, []),
        ((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), 2, []),
        ({"a": numpy.zeros((2, 3), dtype="f"), "b": numpy.zeros((2, 3), dtype="f")}, 0, ["a", "b"]),
        (ArgsKwargs((numpy.zeros((2, 3), dtype="f"), numpy.zeros((2, 3), dtype="f")), {"c": numpy.zeros((2, 3), dtype="f")}), 2, ["c"]),
        # fmt: on
    ],
)
def test_tensorflow_wrapper_convert_inputs(data, n_args, kwargs_keys):
    import tensorflow as tf

    keras_model = tf.keras.Sequential([tf.keras.layers.Dense(12, input_shape=(12,))])
    model = TensorFlowWrapper(keras_model)
    convert_inputs = model.attrs["convert_inputs"]
    Y, backprop = convert_inputs(model, data, is_train=True)
    check_input_converters(Y, backprop, data, n_args, kwargs_keys, tf.Tensor)


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_thinc_model_subclass(tf_model):
    class CustomModel(Model):
        def fn(self):
            return 1337

    model = TensorFlowWrapper(tf_model, model_class=CustomModel)
    assert isinstance(model, CustomModel)
    assert model.fn() == 1337


@pytest.mark.skipif(not has_tensorflow, reason="needs TensorFlow")
def test_tensorflow_wrapper_thinc_set_model_name(tf_model):
    model = TensorFlowWrapper(tf_model, model_name="cool")
    assert model.name == "cool"