1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
import inspect
import pickle
from types import GeneratorType
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
import catalogue
import numpy
import pytest
try:
from pydantic.v1 import BaseModel, PositiveInt, StrictBool, StrictFloat, constr
except ImportError:
from pydantic import BaseModel, PositiveInt, StrictBool, StrictFloat, constr # type: ignore
import thinc.config
from thinc.api import Config, Model, NumpyOps, RAdam
from thinc.config import ConfigValidationError
from thinc.types import Generator, Ragged
from thinc.util import partial
from .util import make_tempdir
EXAMPLE_CONFIG = """
[optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
use_averages = true
[optimizer.learn_rate]
@schedules = "warmup_linear.v1"
initial_rate = 0.1
warmup_steps = 10000
total_steps = 100000
[pipeline]
[pipeline.parser]
name = "parser"
factory = "parser"
[pipeline.parser.model]
@layers = "spacy.ParserModel.v1"
hidden_depth = 1
hidden_width = 64
token_vector_width = 128
[pipeline.parser.model.tok2vec]
@layers = "Tok2Vec.v1"
width = ${pipeline.parser.model:token_vector_width}
[pipeline.parser.model.tok2vec.embed]
@layers = "spacy.MultiFeatureHashEmbed.v1"
width = ${pipeline.parser.model.tok2vec:width}
[pipeline.parser.model.tok2vec.embed.hidden]
@layers = "MLP.v1"
depth = 1
pieces = 3
layer_norm = true
outputs = ${pipeline.parser.model.tok2vec.embed:width}
[pipeline.parser.model.tok2vec.encode]
@layers = "spacy.MaxoutWindowEncoder.v1"
depth = 4
pieces = 3
window_size = 1
[pipeline.parser.model.lower]
@layers = "spacy.ParserLower.v1"
[pipeline.parser.model.upper]
@layers = "thinc.Linear.v1"
"""
OPTIMIZER_CFG = """
[optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
use_averages = true
[optimizer.learn_rate]
@schedules = "warmup_linear.v1"
initial_rate = 0.1
warmup_steps = 10000
total_steps = 100000
"""
class my_registry(thinc.config.registry):
cats = catalogue.create("thinc", "tests", "cats", entry_points=False)
class HelloIntsSchema(BaseModel):
hello: int
world: int
class Config:
extra = "forbid"
class DefaultsSchema(BaseModel):
required: int
optional: str = "default value"
class Config:
extra = "forbid"
class ComplexSchema(BaseModel):
outer_req: int
outer_opt: str = "default value"
level2_req: HelloIntsSchema
level2_opt: DefaultsSchema = DefaultsSchema(required=1)
@my_registry.cats.register("catsie.v1")
def catsie_v1(evil: StrictBool, cute: bool = True) -> str:
if evil:
return "scratch!"
else:
return "meow"
@my_registry.cats.register("catsie.v2")
def catsie_v2(evil: StrictBool, cute: bool = True, cute_level: int = 1) -> str:
if evil:
return "scratch!"
else:
if cute_level > 2:
return "meow <3"
return "meow"
good_catsie = {"@cats": "catsie.v1", "evil": False, "cute": True}
ok_catsie = {"@cats": "catsie.v1", "evil": False, "cute": False}
bad_catsie = {"@cats": "catsie.v1", "evil": True, "cute": True}
worst_catsie = {"@cats": "catsie.v1", "evil": True, "cute": False}
def test_make_config_positional_args_dicts():
cfg = {
"hyper_params": {"n_hidden": 512, "dropout": 0.2, "learn_rate": 0.001},
"model": {
"@layers": "chain.v1",
"*": {
"relu1": {"@layers": "Relu.v1", "nO": 512, "dropout": 0.2},
"relu2": {"@layers": "Relu.v1", "nO": 512, "dropout": 0.2},
"softmax": {"@layers": "Softmax.v1"},
},
},
"optimizer": {"@optimizers": "Adam.v1", "learn_rate": 0.001},
}
resolved = my_registry.resolve(cfg)
model = resolved["model"]
X = numpy.ones((784, 1), dtype="f")
model.initialize(X=X, Y=numpy.zeros((784, 1), dtype="f"))
model.begin_update(X)
model.finish_update(resolved["optimizer"])
def test_objects_from_config():
config = {
"optimizer": {
"@optimizers": "my_cool_optimizer.v1",
"beta1": 0.2,
"learn_rate": {
"@schedules": "my_cool_repetitive_schedule.v1",
"base_rate": 0.001,
"repeat": 4,
},
}
}
@thinc.registry.optimizers.register("my_cool_optimizer.v1")
def make_my_optimizer(learn_rate: List[float], beta1: float):
return RAdam(learn_rate, beta1=beta1)
@thinc.registry.schedules("my_cool_repetitive_schedule.v1")
def decaying(base_rate: float, repeat: int) -> List[float]:
return repeat * [base_rate]
optimizer = my_registry.resolve(config)["optimizer"]
assert optimizer.b1(step=optimizer._step, key=(0, "")) == 0.2
assert optimizer.learn_rate(step=optimizer._step, key=(0, "")) == 0.001
def test_handle_generic_model_type():
"""Test that validation can handle checks against arbitrary generic
types in function argument annotations."""
@my_registry.layers("my_transform.v1")
def my_transform(model: Model[int, int]):
model.name = "transformed_model"
return model
cfg = {"@layers": "my_transform.v1", "model": {"@layers": "Linear.v1"}}
model = my_registry.resolve({"test": cfg})["test"]
assert isinstance(model, Model)
assert model.name == "transformed_model"
def test_arg_order_is_preserved():
str_cfg = """
[model]
[model.chain]
@layers = "chain.v1"
[model.chain.*.hashembed]
@layers = "HashEmbed.v1"
nO = 8
nV = 8
[model.chain.*.expand_window]
@layers = "expand_window.v1"
window_size = 1
"""
cfg = Config().from_str(str_cfg)
resolved = my_registry.resolve(cfg)
model = resolved["model"]["chain"]
# Fails when arguments are sorted, because expand_window
# is sorted before hashembed.
assert model.name == "hashembed>>expand_window"
|