File: test_config.py

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (228 lines) | stat: -rw-r--r-- 5,833 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import inspect
import pickle
from types import GeneratorType
from typing import Any, Callable, Dict, Iterable, List, Optional, Union

import catalogue
import numpy
import pytest

try:
    from pydantic.v1 import BaseModel, PositiveInt, StrictBool, StrictFloat, constr
except ImportError:
    from pydantic import BaseModel, PositiveInt, StrictBool, StrictFloat, constr  # type: ignore

import thinc.config
from thinc.api import Config, Model, NumpyOps, RAdam
from thinc.config import ConfigValidationError
from thinc.types import Generator, Ragged
from thinc.util import partial

from .util import make_tempdir

EXAMPLE_CONFIG = """
[optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
use_averages = true

[optimizer.learn_rate]
@schedules = "warmup_linear.v1"
initial_rate = 0.1
warmup_steps = 10000
total_steps = 100000

[pipeline]

[pipeline.parser]
name = "parser"
factory = "parser"

[pipeline.parser.model]
@layers = "spacy.ParserModel.v1"
hidden_depth = 1
hidden_width = 64
token_vector_width = 128

[pipeline.parser.model.tok2vec]
@layers = "Tok2Vec.v1"
width = ${pipeline.parser.model:token_vector_width}

[pipeline.parser.model.tok2vec.embed]
@layers = "spacy.MultiFeatureHashEmbed.v1"
width = ${pipeline.parser.model.tok2vec:width}

[pipeline.parser.model.tok2vec.embed.hidden]
@layers = "MLP.v1"
depth = 1
pieces = 3
layer_norm = true
outputs = ${pipeline.parser.model.tok2vec.embed:width}

[pipeline.parser.model.tok2vec.encode]
@layers = "spacy.MaxoutWindowEncoder.v1"
depth = 4
pieces = 3
window_size = 1

[pipeline.parser.model.lower]
@layers = "spacy.ParserLower.v1"

[pipeline.parser.model.upper]
@layers = "thinc.Linear.v1"
"""

OPTIMIZER_CFG = """
[optimizer]
@optimizers = "Adam.v1"
beta1 = 0.9
beta2 = 0.999
use_averages = true

[optimizer.learn_rate]
@schedules = "warmup_linear.v1"
initial_rate = 0.1
warmup_steps = 10000
total_steps = 100000
"""


class my_registry(thinc.config.registry):
    cats = catalogue.create("thinc", "tests", "cats", entry_points=False)


class HelloIntsSchema(BaseModel):
    hello: int
    world: int

    class Config:
        extra = "forbid"


class DefaultsSchema(BaseModel):
    required: int
    optional: str = "default value"

    class Config:
        extra = "forbid"


class ComplexSchema(BaseModel):
    outer_req: int
    outer_opt: str = "default value"

    level2_req: HelloIntsSchema
    level2_opt: DefaultsSchema = DefaultsSchema(required=1)


@my_registry.cats.register("catsie.v1")
def catsie_v1(evil: StrictBool, cute: bool = True) -> str:
    if evil:
        return "scratch!"
    else:
        return "meow"


@my_registry.cats.register("catsie.v2")
def catsie_v2(evil: StrictBool, cute: bool = True, cute_level: int = 1) -> str:
    if evil:
        return "scratch!"
    else:
        if cute_level > 2:
            return "meow <3"
        return "meow"


good_catsie = {"@cats": "catsie.v1", "evil": False, "cute": True}
ok_catsie = {"@cats": "catsie.v1", "evil": False, "cute": False}
bad_catsie = {"@cats": "catsie.v1", "evil": True, "cute": True}
worst_catsie = {"@cats": "catsie.v1", "evil": True, "cute": False}


def test_make_config_positional_args_dicts():
    cfg = {
        "hyper_params": {"n_hidden": 512, "dropout": 0.2, "learn_rate": 0.001},
        "model": {
            "@layers": "chain.v1",
            "*": {
                "relu1": {"@layers": "Relu.v1", "nO": 512, "dropout": 0.2},
                "relu2": {"@layers": "Relu.v1", "nO": 512, "dropout": 0.2},
                "softmax": {"@layers": "Softmax.v1"},
            },
        },
        "optimizer": {"@optimizers": "Adam.v1", "learn_rate": 0.001},
    }
    resolved = my_registry.resolve(cfg)
    model = resolved["model"]
    X = numpy.ones((784, 1), dtype="f")
    model.initialize(X=X, Y=numpy.zeros((784, 1), dtype="f"))
    model.begin_update(X)
    model.finish_update(resolved["optimizer"])


def test_objects_from_config():
    config = {
        "optimizer": {
            "@optimizers": "my_cool_optimizer.v1",
            "beta1": 0.2,
            "learn_rate": {
                "@schedules": "my_cool_repetitive_schedule.v1",
                "base_rate": 0.001,
                "repeat": 4,
            },
        }
    }

    @thinc.registry.optimizers.register("my_cool_optimizer.v1")
    def make_my_optimizer(learn_rate: List[float], beta1: float):
        return RAdam(learn_rate, beta1=beta1)

    @thinc.registry.schedules("my_cool_repetitive_schedule.v1")
    def decaying(base_rate: float, repeat: int) -> List[float]:
        return repeat * [base_rate]

    optimizer = my_registry.resolve(config)["optimizer"]
    assert optimizer.b1(step=optimizer._step, key=(0, "")) == 0.2
    assert optimizer.learn_rate(step=optimizer._step, key=(0, "")) == 0.001


def test_handle_generic_model_type():
    """Test that validation can handle checks against arbitrary generic
    types in function argument annotations."""

    @my_registry.layers("my_transform.v1")
    def my_transform(model: Model[int, int]):
        model.name = "transformed_model"
        return model

    cfg = {"@layers": "my_transform.v1", "model": {"@layers": "Linear.v1"}}
    model = my_registry.resolve({"test": cfg})["test"]
    assert isinstance(model, Model)
    assert model.name == "transformed_model"


def test_arg_order_is_preserved():
    str_cfg = """
    [model]

    [model.chain]
    @layers = "chain.v1"

    [model.chain.*.hashembed]
    @layers = "HashEmbed.v1"
    nO = 8
    nV = 8

    [model.chain.*.expand_window]
    @layers = "expand_window.v1"
    window_size = 1
    """

    cfg = Config().from_str(str_cfg)
    resolved = my_registry.resolve(cfg)
    model = resolved["model"]["chain"]

    # Fails when arguments are sorted, because expand_window
    # is sorted before hashembed.
    assert model.name == "hashembed>>expand_window"